• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Films multinanocouches de polymères amorphes coextrudés : élaboration, caractérisation et stabilité des nanocouches / Coextruded nanolayered films of amorphous polymers : processing, characterization and stability of nanolayers

Bironeau, Adrien 14 December 2016 (has links)
La coextrusion multinanocouche est un procédé innovant qui permet de combiner deux polymères afin de produire des films composés de couches alternées dont le nombre peut être contrôlé et atteindre plusieurs milliers. Ainsi, les épaisseurs des couches individuelles dans le film peuvent en théorie atteindre quelques nanomètres. Les effets de confinement des chaînes macromoléculaires ainsi que la multiplication des interfaces peuvent alors conduire à des propriétés macroscopiques améliorées, pertinentes dans un contexte industriel (optiques, mécaniques, barrière aux gaz, …). Néanmoins, à ces échelles, des défauts dans la continuité des couches peuvent apparaître pendant la mise en forme et affecter ces propriétés. L’objectif de cette thèse est d’identifier les paramètres clés, procédés et matériaux, et de mieux comprendre les mécanismes à l’origine des instabilités conduisant à ces inhomogénéités de la nanostructure. Dans ce cadre, deux polymères amorphes ont été principalement étudiés, le polyméthacrylate de méthyle (PMMA) et le polystyrène (PS). Des films composés de 65 à plus de 8000 couches alternées, à différents taux d’étirage et compositions massiques, ont été fabriqués dans le but d’étudier la stabilité du procédé à différentes échelles et principalement à l’échelle nanométrique. Les films obtenus ont été caractérisés par microscopie, en particulier la microscopie à force atomique (AFM). Un premier travail a consisté à mettre en place une démarche statistique et quantitative pour caractériser l’épaisseur moyenne des couches obtenues, mais aussi la distribution d’épaisseur et la stabilité des couches. Puis, nous avons cherché à sonder l’effet de différents paramètres procédés et matériaux sur l’homogénéité des structures à l’échelle micronique. En se plaçant ensuite dans des conditions stables à ces échelles, nous avons cherché à faire varier de manière systématique les paramètres procédés pour étudier la stabilité des couches à l’échelle nanométrique. Nous avons mis en évidence l’existence d’une épaisseur critique en dessous de laquelle les couches rompaient, située autour de 10 nm pour le couple PS/PMMA. Lorsque l’épaisseur visée est de l’ordre de la dizaine de nanomètres ou inférieures, le taux de rupture de couches augmente également fortement. Des hypothèses sont faites quant aux causes de ces ruptures et de l’existence de cette épaisseur critique. Nous suggérons que ces ruptures peuvent être provoquées par des perturbations interfaciales (liées à des impuretés et/ou aux fluctuations thermiques) amplifiées par les forces de van der Waals qui deviennent non négligeables pour de faibles épaisseurs de couches (typiquement inférieures à 40 nm) et sont attractives entre deux couches de même nature. Des expériences modèles sont proposées dans la perspective d'une approche quantitative des conditions critiques d'apparition de ces défauts. / Nanolayer coextrusion enables the production of polymeric films composed of up to thousands of alternating layers. The thickness of each layer can in theory be controlled, by monitoring the number of layers, the mass ratio of the polymers, and the draw ratio of the film at the exit die, and can decrease down to several nanometers. It has been shown that such films can display drastically improved macroscopic properties, such as optical, gas barrier, or mechanical, due to confinement and interfacial effects. However, layer beak-up phenomenon occurring at such thicknesses, impacting the resulting properties, has also been reported for many polymer pairs. The goal of this thesis is to investigate the causes for these break-ups and for the instabilities leading to them. Most of this work deals with multilayer films of polymethyl methacrylate (PMMA) and polystyrene (PS), two amorphous polymers which blends were widely studied in the literature. Films with 65 to more than 8000 layers were fabricated by modifying processing and molecular parameters, to determine their impact on the homogeneity of the samples. These films were characterized mainly by using microscopy techniques, and especially atomic force microscopy (AFM), to extract not only the mean layer thickness, but distribution of thicknesses and the ratio of broken layers within the sample. A first necessary step was to develop a reliable statistical and quantitative analysis to obtain such information. Then, a first study focused on the effects of some process and material parameters on the homogeneity of multilayer films with micronic thicknesses. Choosing favourable experimental conditions at these scales, nanolayered films were then fabricated. We showed the existence of a critical layer thickness, below which layer breakup, estimated at around 10 nm for PS/PMMA films. When the targeted thickness is around or below 10 nm, the amount of broken layers increases significantly. We make the hypothesis that the layer breakup phenomenon is due to interfacial instabilities driven by van der Waals forces. The thicknesses of the layers we can reach with this process are so small that dispersive forces between two layers composed of the same polymer cannot be neglected (typically below 100 nm). Model experiments are proposed to quantitatively study the critical conditions of appearance of these layer breakups.

Page generated in 0.052 seconds