• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • Tagged with
  • 16
  • 16
  • 9
  • 9
  • 9
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthese intermetallischer Phasen mittels mikrowellenunterstütztem Polyol-Prozess: Einfluss von Nanostrukturierung auf chemische und physikalische Eigenschaften der Verbindungen

Heise, Martin 11 September 2015 (has links)
Schon seit dem 17. Jahrhundert ist bekannt, dass kolloidales Gold in wässrigen Lösungen eine rötliche Färbung hervorruft; ein Effekt der direkt aus der Nanostrukturierung des Goldes resultiert. Neben der Modifizierung optischer Eigenschaften können durch Nano- oder Mikrostrukturierung auch andere, neuartige Charakteristika hervorgerufen werden, wie bspw. an Bi3Ni nachgewiesen werden konnte: Mittels mikrowelleninduzierter, reduktiver Umsetzung in Ethylenglykol (mikrowellenunterstützter Polyol-Prozess) konnten submikroskalige Bi3Ni-Stäbchen kristallisiert werden, die in Magnetisierungsmessungen die überaus seltene Koexistenz von Supraleitung und Ferromagnetismus zeigten. Ein Quanteneffekt, der im entsprechenden Volumenmaterial nicht nachgewiesen werden kann und auf spezielle Oberflächenzustände zurückzuführen ist. Durch Nanostrukturierung können außerdem die chemischen Eigenschaften entscheidend beeinflusst werden, wie an BiRh gezeigt werden konnte. Der mikrowellenunterstützte Polyol-Prozess begünstigt hierbei die Kristallisation von pseudohexagonalen Plättchen mit 60 nm Durchmesser und 20 nm Dicke. Im Gegensatz zum Volumenmaterial zeigten diese in der industrierelevanten Semihydrierung von Acetylen zu Ethylen Bestwerte sowohl in Bezug auf den Umsatz als auch die Selektivität. Basierend auf diesen Erkenntnissen sollten mithilfe des mikrowellenunterstützten Polyol-Prozesses im Rahmen der vorliegenden Dissertation nanostrukturierte, intermetallische Verbindungen des Typs M–M‘ (M = Sn, Pb, Sb, Bi; M‘ = Fe, Co, Ni, Cu, Pd, Ir, Pt) hergestellt und eingehend chemisch sowie physikalisch charakterisiert werden. Als Edukte dienten Metallsalze, die stets in Ethylenglykol als primäres Lösungs- und Reduktionsmittel umgesetzt wurden. Das Polyol nimmt zusätzlich als oberflächenaktive Substanz Einfluss auf Partikelgröße und -gestalt. Zur Optimierung der Synthesen und um möglichst viele Phasen zugänglich zu machen, wurden Art und Konzentration der Metallsalze, pH-Wert, Reaktionstemperatur und -zeit variiert sowie die Zugabe von Oleylamin und/oder Ölsäure getestet. Oleylamin und Ölsäure sind ihrerseits oberflächenaktive Substanzen, wobei erstere zugleich reduktiv wirken kann. Die methodeninhärente Nanostrukturierung der Produkte führte teilweise zu bemerkenswerten Effekten in der Phasenbildung sowie Beeinflussung der chemischen Eigenschaften. Nahezu das komplette binäre Phasensystem Bi–Pd konnte durch Optimierung der Syntheseparameter zugänglich gemacht werden. Die Besonderheit hierbei: Neben den Raumtemperaturphasen Bi2Pd, Bi2Pd5 und BiPd3 konnte Bi12Pd31 als Hochtemperaturmodifikation sowie die neue und zugleich metastabile Modifikation gamma-Bi1.0Pd erzeugt und stabilisiert werden. Das im NiAs-Strukturtyp kristallisierende gamma-Bi1.0Pd zeigte in Magnetisierungs- und Widerstandsmessungen Supraleitung unterhalb von 3.2 K. Mittels mikrowellenunterstütztem Polyol-Prozess gelang bereits in eigenen Vorarbeiten die Synthese von nanostrukturiertem Bi3Ir. Die Verbindung ist ausschließlich in nanopartikulärer Form bei Raumtemperatur empfindlich gegenüber molekularem Sauerstoff und bildet im Zuge einer unkonventionellen oxidativen Interkalation das intermetallische Suboxid Bi3IrOx. Dieses Verhalten ist verknüpft mit einer amorphen Hülle um die Bi3Ir-Nanopartikel, da diese zur Aktivierung des molekularen Sauerstoffs benötigt wird. Unter Einsatz von Reduktionsmitteln — z.B. Wasserstoff, Superhydrid®, Hydrazin — ist der Oxidationsprozess für x < 2 vollständig reversibel. Im Rahmen der vorliegenden Arbeit konnten die Erkenntnisse über Bi3Ir und Bi3IrOx vertieft werden: Bi3IrOx konnte als erster Sauerstoffionenleiter bei Raumtemperatur klassifiziert werden, der darüber hinaus metallisch ist. Dies gelang mittels Röntgen- und Elektronenbeugung, hochauflösender Transmissionselektronenmikroskopie, Röntgenphotoelektronenspektroskopie, quantenchemischen Rechnungen, und Experimenten zur Reaktionskinetik. Mit 84 meV ist die Aktivierungsenergie für die Ionenleitung um eine Größenordnung kleiner als in allen konventionellen Sauerstoffionenleitern. Der Diffusionskoeffizient beträgt für 25 °C 1.2·10–22 m2s–1, was in Anbetracht der 10–19 m2s–1 des Yttrium-stabilisierten Zirkoniumoxids (häufig genutztes Referenzmaterial) bei 150 °C wenig erscheint, aber eben schon für Raumtemperatur gilt. Durch den mikrowellenunterstützten Polyol-Prozess konnten erstmals phasenreine, nanostrukturierte Proben von PbPd3, Pd20Sb7, Pd8Sb3, PdSb, Ni5Sb2, und Pd13Sn9 synthetisiert werden sowie alternative Syntheserouten für weitere Phasen (alpha-/beta-/gamma-Bi2Pt, BiPt, NiSb, beta-Ni3Sn2, Pd2Sn, PdSn, Pt3Sn, PtSn, PtPb) ermittelt werden, wobei mehrfach die Bildung von Hochtemperaturphasen beobachtet wurde. Weiterhin konnten einige Grenzen der Methode aufgezeigt werden: Während blei- und bismutreiche Phasen prinzipiell einfach kristallisiert werden können, sind antimon- und zinnreiche Verbindungen mit der Methode kaum erreichbar. Außerdem zeigte sich, dass in den meisten Phasensystemen nur bestimmte Verbindungen angesteuert werden können; die Bildung der intermetallischen Phasen ist häufig die Triebkraft zur Reduktion der Metallkationen. In den Systemen von Co-Sb, Co-Sn und Ir-Sb konnte bisher keine Feststoffbildung beobachtet werden.
12

Kinetically controlled synthesis of PdNi bimetallic porous nanostructures with enhanced electrocatalytic activity

Zhu, Chengzhou, Wen, Dan, Oschatz, Martin, Holzschuh, Matthias, Liu, Wei, Herrmann, Anne-Kristin, Simon, Frank, Kaskel, Stefan, Eychmüller, Alexander 26 August 2016 (has links)
No description available.
13

Ecotoxicology of nanoparticles – effects on organisms from activated sludge in wastewater treatment plants

Burkart, Corinna 21 November 2016 (has links)
Among all nanomaterials, which are intentionally manufactured and applied, nanosilver (nAg) is one of the most frequently applied nanomaterials. It is introduced into wastewater treatment plants (WWTPs) due to its use as antimicrobial resource in household and medical care products and hence concern raised regarding its impact on activated sludge organisms and their purification efficiency. Within this thesis, the effects of nAg on single species, simple food chains and communities related to activated sludge were investigated. Among all tested species in this thesis, the gammaproteobacteria R. planticola was the most sensitive organism regarding the tested nAg material, NM-300K. The environmental risk assessment (ERA), based on an assumed predicted environmental concentration derived from modeled concentrations of other types of nAg, revealed no risk for the activated sludge. This result should be interpreted with care, considering the tolerantly chosen safety factor for calculation of the predicted no effect concentration and the assumptions which were made concerning environmental concentrations. Differences in acute toxic effects of nAg on the ciliate P. tetraurelia were observed depending on the type of medium and the exposure pathway (via medium or via bacterial food). More detailed investigations are required to analyze the distribution, availability and uptake of nAg into ciliates in the respective tests. In chronic experiments concentration response was very steep in the range between the effect concentration determined in acute toxicity testing (resulting in 100% mortality) and a tenfold lower concentration (no effect observed) for both exposure pathways. Community experiments with activated sludge exposed to realistic and high concentrations of nAg revealed acute effects on the protozoan community at high nAg concentration using multivariate statistics for data analysis. In contrast, the sludge biotic index was not meaningful for data interpretation, as no differences were observed between the samples of different treatments. For chronic testing, more preliminary work is required to develop a protocol for artificial wastewater which serves the needs of activated sludge organisms over longer time periods and which retains a typical composition of the activated sludge community.
14

Nanostructured Porous High Surface Area Ceramics for Catalytic Applications

Krawiec, Piotr 20 December 2006 (has links)
In the present work new methods were developed for preparation of novel nanosized and nanostructured ceramic materials. Ordered mesoporous silica SBA-15 was found to be useful as a hard template for the nanocasting of silicon carbide and allowed the preparation of high temperature stable mesoporous silicon carbide ceramics. Chemical vapor infiltration of SBA-15 with dimethyldichlorosilane at elevated temperatures yields SiC/SBA-15 nanocomposites. The subsequent HF treatment of those composites resulted in silica removal and preparation of mesoporous silicon carbide with surface areas between 410 and 830 m2g-1 and high mesopore volume (up to 0.9 cm3g-1). The pore size (between 3 and 7nm in diameter) and surface area of mesoporous silicon carbide were controlled by adjusting the infiltration conditions (time, atmosphere). The mesoporous silicon carbide prepared via this method showed high structural thermal stability at 1300 oC, exceeding that of the SBA-15 template. However, the ordering on the mesoscopic scale was low. Nevertheless, highly ordered mesoporous silicon carbide materials were obtained via polymer melt infiltration in SBA-15. The low molecular weight polycarbosilane used as a preceramic precursor was converted at 1300 oC to silicon carbide inside the SBA-15, and after subsequent silica removal by HF, a highly ordered mesoporous material was obtained. Ordered mesoporous silicon carbide prepared by the methods reported here, may be an interesting material as a support due to its high temperature stability, chemical inertness, high thermal conductivity and semiconductor properties. In contrast to the nanocasting approach, based on the complete pore filling, also a new in-situ procedure for the preparation of finely dispersed metal and metal oxide particles inside ordered mesoporous silica was developed. A swelling agent (toluene) was used to deliver a hydrophobic platinum precursor into the surfactant micelles before addition of silica source. Such an in-situ method resulted in very high platinum incorporation (80-100%), not achieved for any other in-situ preparation procedures. Additionally, the presence of platinum allowed to decrease the template removal temperatures. Moreover, the method was also extended to other metal or metal oxide/ordered mesoporous silica systems. This may be especially interesting for the preparation of ordered mesoporous materials with low melting points, where typically the structure collapses during the high temperature calcinations process. The in-situ synthesized V2O5/MCM-41 materials were used to prepare VN/MCM-41 composites via nitridation in ammonia at 800oC. This method allowed to prepare highly dispersed, X-ray amorphous vanadium nitride species, with high activity in the propane dehydrogenation. Compared to nitridation of supported vanadium oxide prepared via the ex-situ procedure, in-situ synthesized materials showed similar catalytic activity, in spite of having significantly lower vanadium loading. As an alternative for the preparation of supported nitride materials, a novel preparation procedure of bulk not supported nanocrystalline vanadium nitride with high surface area was presented. Instead of pure oxide powder (which was typically used in the preparation of high surface area vanadium nitride catalysts), a macroporous amine intercalated V2O5 was used as the starting material. The obtained nitride consisted of small crystallites and had a surface area up to 198 m2g-1. Moreover, this foam-derived VN showed significantly improved activity as a catalyst in propane dehydrogenation. This novel preparation method could also be extended to other systems such as ternary VMoxNy nitrides.
15

Herstellung und Charakterisierung makroskopischer Agglomerate aus Kohlenstoffnanomaterialien für EMV-Schutzfolien

Peter, Christoph 05 September 2022 (has links)
Folien aus mehrwandigen Kohlenstoffnanoröhren, auch Buckypaper genannt, stellen eine vielversprechende Alternative zu herkömmlichen Schirmmaterialien für elektromagnetische Strahlung dar. Zum Aufbau eines grundlegenden Verständnisses und zur Verbesserung der Verarbeitbarkeit gegenüber kommerziell erhältlichem Buckypaper, wurden nach Auswahl eines geeigneten Herstellungsverfahrens Buckypaper aus unterschiedlichen Nanomaterialien hergestellt. Zur Untersuchung der Auswirkung ausgewählter Herstellungsparameter erfolgte dabei eine Parametervariation mittels statistischer Versuchsplanung. Zusätzlich wurden im Vorfeld weitere Einflussfaktoren betrachtet. Dadurch konnten unterschiedliche Einwaagemengen und Rohmaterialien, verschiedene Lösungsmittel und Konzentrationen der Nanomaterialien sowie diverse Prozessparameter des angewandten Nassprozesses untersucht werden. Im Rahmen der Charakterisierung der hergestellten Proben, mittels unter anderem Vierleiter- und Schirmdämpfungsmessung sowie Rasterelektronenmikroskopie, wurden die signifikanten Einflüsse der untersuchten Parameter identifiziert und beschrieben. Es konnten dadurch sehr homogene Buckypaper mit hoher Leitfähigkeit und guter Schirmungseffektivität hergestellt werden, die eine verbesserte Grundlage für die weitere Entwicklung mikrostrukturierter Schutzfolien bilden. Aus dem Ergebnis der Arbeit lassen sich optimale Herstellungsparameter von Buckypaper für den Einsatz als Schirmmaterial im Bereich der elektromagnetischen Verträglichkeit ermitteln. / Freestanding multiwalled carbon nanotube sheets, also known as buckypaper, represent a promising alternative for various applications, especially for electromagnetic interference shielding. In order to develop a fundamental understanding and improve the processability compared to commercially available buckypaper, sheets from different nanotube materials were produced after a suitable manufacturing process had been selected. Design of experiments was used to investigate the effects of various manufacturing parameters. Other influencing factors were considered in advance. Several raw materials of different weights, varying solvents and concentrations of the nanomaterials as well as various processing parameters of the applied wet process were thereby examined. Significant influences on the properties of produced buckypaper were identified during characterization by, among other means, four-point probe, shielding attenuation measurements and scanning electron microscopy. From the result, optimal manufacturing parameters can be determined. Thus, very homogeneous buckypaper with high electrical conductivity as well as good mechanical strength and shielding effectiveness could be produced. This provides a solid foundation for further development of frequency selective electromagnetic interference shields.
16

Computational studies of electronic and thermal properties of low dimensional materials

Rodriguez Mendez, Alvaro Gaspar 25 October 2023 (has links)
The control of low dimensional materials holds potential for revolutionizing the electronic, thermal, and thermoelectric materials engineering. Through strategic manipulation and optimization of these materials, unique properties can be uncover which enable more efficient and effective materials development. Towards the determination of nanoscale strategies to improve the electronic and phononic devices, computational simulations of modified low dimensional materials have been carried in this research. First, the electronic properties of chemically func tionalized phosphorene monolayers are evaluated with spin-polarized Density Functional Theory, as a potential method to tune their electronic properties. The functionalization not only leads to formation of additional states within the semiconducting gap, but also to the emergence of local magnetism. The magnetic ground state and electronic structure are investigated in dependence of molecular coverage, lattice direction of the molecular adsorption and molecule type functionalization. Furthermore, the physical and transport properties of phosphorene grain boundaries under uniaxial strain are evaluated by the use of Density Functional based Tight Binding method in combination with Landauer theory. In both grain boundary types, the electronic bandgap decreases under strain, however, the respective thermal conductance is only weakly affected, despite rather strong changes in the frequency-resolved phonon transmission. The combination of both effects results in an enhancement in the thermoelectric figure of merit in the phosphorene grain boundary systems. Finally, the thermoelectric properties of carbon nanotubes peapod heterostructures are studied and compared to pristine nanotubes using also the Density Functional based Tight Binding method and Landauer theory. It is found that the fullerene encapsulation modifies the electron and phonon transport properties, causing the formation of electronic channels and the suppression of vibrational modes that lead to an improvement of the thermoelectric figure of merit. The results of this thesis highlight the potential of strategic manipulation and optimization of low dimensional materials in improving their unique electronic and thermal properties, revealing promising avenues for improving electronic and phononic devices.:ABSTRACT i ZUSAMMENFASSUNG ii ACKNOWLEDGEMENT iv LIST OF FIGURES ix LIST OF TERMS AND ABBREVIATIONS xviii 1 Introduction 1 1.1 Motivation 1 1.2 Objectives and outline 6 2 Computational Methods 8 2.1 Density Functional Theory 8 2.1.1 The Many-Body System Hamiltonian and the Born-Oppenheimer approximation 9 2.1.2 Thomas-Fermi-Dirac approximation model 10 2.1.3 The Hohenberg-Kohn theorems 12 2.1.4 The Kohn-Sham orbitals equations 13 2.1.5 Exchange-correlation functionals 15 2.2 Density Functional Based Tight Binding method 16 2.2.1 Tight-binding formalism 17 2.2.2 From DFT to DFTB 20 2.2.3 Parametrization 22 2.3 Atomistic Green’s functions 23 2.3.1 Non-Equilibrium Green’s functions for modeling electronic transmission 23 2.3.2 Non-equilibrium Green’s function for modeling thermal transmission 27 3 Tuning the electronic and magnetic properties through chemical functionalization 3.1 Introduction 33 3.1.1 Black phosphorus as a 2D material 33 3.1.2 Chemical Functionalization of low dimensional systems 35 3.1.3 Bipolar Magnetic Semiconductors 36 3.2 Computational approach 38 3.3 Interface effects in phosphorene by OH functionalization 39 3.3.1 Single molecule functionalization 39 3.3.2 Lattice selection 43 3.3.3 Coverage 45 3.4 Chiral functionalization effect in phosphorene 48 3.5 Functionalizing phosphorene towards BMS 51 3.6 Summary 53 4 Tuning transport properties through strain and grain bound-aries 4.1 Introduction 54 4.1.1 Strain in low dimensional materials 54 4.1.2 Grain boundaries 56 4.2 Computational approach 58 4.2.1 Molecular systems 58 4.2.2 Electron and phonon transport and thermoelectric figure of merit 58 4.3 Structural modification by strain in GB systems 60 4.4 Electronic structure modification by strain in GB systems 63 4.5 Thermal transport modification by strain in GB systems 65 4.6 Thermoelectric figure of merit of strained GB systems 68 4.7 Summary 71 5 Tuning transport properties through hybrid nanomaterials: CNT peapods 73 5.1 Introduction 73 5.1.1 Carbon-based nanostructures 73 5.1.2 CNT peapods as hybrid nanomaterials 76 5.2. Computational details 77 5.2.1 CNT peapod model 77 5.2.2 Quantum transport methodology 78 5.3 Structural properties of CNT peapods 79 5.4 Electronic properties of CNT peapods 80 5.5 Thermal properties of CNT peapods 83 5.6 Thermoelectronic properties of CNT peapods 85 5.7 Summary 88 6 Conclusions and outlook 91 Appendices Appendix A Supplementary information to phosphorene functionalization A.1 Spin resolved density of states of 1-OH system 96 A.2 Spin valve model 97 Appendix B Supplementary information to phosphorene grain boundaries 98 B.1 Projected Phonon Density of States in GB1 98 B.2 Thermoelectric transport properties of GB2 99 Appendix C Supplementary information to CNT peapods 101 C.1 Geometry optimization of CNT peapods with larger CNT diameter 101 C.2 Additional analysis of electron transport properties 102 C.3 Phonon band structure of different CNT structures 104 C.4 Additional analysis of thermoelectric performance 105 REFERENCES 105 LIST OF PUBLICATIONS 131 PRESENTATIONS 132 / Die Kontrolle niedrigdimensionaler Materialien birgt das Potenzial für eine Revolutionierung der elektronischen, thermischen und thermoelektrischen Technologien. Durch strategische Manipulation und Optimierung dieser Materialien können einzigartige Eigenschaften aufgedeckt werden, die eine effizientere und effektivere Materialentwicklung ermöglichen. Um Strategien im Nanobereich zur Verbesserung elektronischer und phononischer Bauelemente zu ermitteln, wurden in dieser Forschungsarbeit rechnerische Simulationen modifizierter niedrigdimensionaler Materialien durchgeführt. Zunächst werden die elektronischen Eigenschaften von chemisch funktionalisierten Phosphoren-Monoschichten mit Hilfe der spinpolarisierten Dichtefunktionaltheorie als potenzielle Methode zur Abstimmung ihrer elektronischen Eigenschaften bewertet. Die Funktionalisierung führt nicht nur zur Bildung zusätzlicher Zustände innerhalb der halbleitenden Lücke, sondern auch zum Auftreten von lokalem Magnetismus. Der magnetische Grundzustand und die elektronische Struktur werden in Abhängigkeit von der molekularen Bedeckung, der Gitterrichtung der molekularen Adsorption und der Funktionalisierung des Moleküls untersucht. Darüber hinaus werden die Transporteigenschaften von Phosphoren-Korngrenzen unter uniaxialer Belastung mit Hilfe der auf Dichtefunktionen basierenden Tight-Binding-Methode in Kombination mit der Landauer-Theorie untersucht. In beiden Korngrenzentypen nimmt die elektronische Bandlücke unter Dehnung ab, die jeweilige Wärmeleitfähigkeit wird jedoch nur schwach beeinflusst, trotz ziemlich starker Änderungen in der frequenzaufgelösten Phononentransmission. Die Kombination bei der Effekte führt zu einer Erhöhung der thermoelektrischen Leistungszahl in den Phosphorkorngrenzensystemen. Schließlich werden die thermoelektrischen Eigenschaften von Kohlenstoffnanoröhren-Peapod-Heterostrukturen untersucht und mit denen von reinen Nanoröhren verglichen, wobei auch die auf Dichtefunktionen basierende Tight-Binding-Methode und die Landauer-Theorie verwendet werden. Es wird festgestellt, dass die Fullereneinkapselung die Elektronen- und Phononentransporteigenschaften modifiziert und die Bildung von elektronischen Kanälen und die Unterdrückung von Schwingungsmoden bewirkt, was zu einer Verbesserung der thermoelektrischen Leistungszahl führt. Die Ergebnisse dieser Arbeit verdeutlichen das Potenzial der strategischen Manipulation und Optimierung niedrigdimensionaler Materialien zur Verbesserung ihrer einzigartigen elektronischen und thermischen Eigenschaften und zeigen vielversprechende Wege zur Verbesserung elektronischer und phononischer Bauteile auf.:ABSTRACT i ZUSAMMENFASSUNG ii ACKNOWLEDGEMENT iv LIST OF FIGURES ix LIST OF TERMS AND ABBREVIATIONS xviii 1 Introduction 1 1.1 Motivation 1 1.2 Objectives and outline 6 2 Computational Methods 8 2.1 Density Functional Theory 8 2.1.1 The Many-Body System Hamiltonian and the Born-Oppenheimer approximation 9 2.1.2 Thomas-Fermi-Dirac approximation model 10 2.1.3 The Hohenberg-Kohn theorems 12 2.1.4 The Kohn-Sham orbitals equations 13 2.1.5 Exchange-correlation functionals 15 2.2 Density Functional Based Tight Binding method 16 2.2.1 Tight-binding formalism 17 2.2.2 From DFT to DFTB 20 2.2.3 Parametrization 22 2.3 Atomistic Green’s functions 23 2.3.1 Non-Equilibrium Green’s functions for modeling electronic transmission 23 2.3.2 Non-equilibrium Green’s function for modeling thermal transmission 27 3 Tuning the electronic and magnetic properties through chemical functionalization 3.1 Introduction 33 3.1.1 Black phosphorus as a 2D material 33 3.1.2 Chemical Functionalization of low dimensional systems 35 3.1.3 Bipolar Magnetic Semiconductors 36 3.2 Computational approach 38 3.3 Interface effects in phosphorene by OH functionalization 39 3.3.1 Single molecule functionalization 39 3.3.2 Lattice selection 43 3.3.3 Coverage 45 3.4 Chiral functionalization effect in phosphorene 48 3.5 Functionalizing phosphorene towards BMS 51 3.6 Summary 53 4 Tuning transport properties through strain and grain bound-aries 4.1 Introduction 54 4.1.1 Strain in low dimensional materials 54 4.1.2 Grain boundaries 56 4.2 Computational approach 58 4.2.1 Molecular systems 58 4.2.2 Electron and phonon transport and thermoelectric figure of merit 58 4.3 Structural modification by strain in GB systems 60 4.4 Electronic structure modification by strain in GB systems 63 4.5 Thermal transport modification by strain in GB systems 65 4.6 Thermoelectric figure of merit of strained GB systems 68 4.7 Summary 71 5 Tuning transport properties through hybrid nanomaterials: CNT peapods 73 5.1 Introduction 73 5.1.1 Carbon-based nanostructures 73 5.1.2 CNT peapods as hybrid nanomaterials 76 5.2. Computational details 77 5.2.1 CNT peapod model 77 5.2.2 Quantum transport methodology 78 5.3 Structural properties of CNT peapods 79 5.4 Electronic properties of CNT peapods 80 5.5 Thermal properties of CNT peapods 83 5.6 Thermoelectronic properties of CNT peapods 85 5.7 Summary 88 6 Conclusions and outlook 91 Appendices Appendix A Supplementary information to phosphorene functionalization A.1 Spin resolved density of states of 1-OH system 96 A.2 Spin valve model 97 Appendix B Supplementary information to phosphorene grain boundaries 98 B.1 Projected Phonon Density of States in GB1 98 B.2 Thermoelectric transport properties of GB2 99 Appendix C Supplementary information to CNT peapods 101 C.1 Geometry optimization of CNT peapods with larger CNT diameter 101 C.2 Additional analysis of electron transport properties 102 C.3 Phonon band structure of different CNT structures 104 C.4 Additional analysis of thermoelectric performance 105 REFERENCES 105 LIST OF PUBLICATIONS 131 PRESENTATIONS 132

Page generated in 0.0956 seconds