Spelling suggestions: "subject:"nanoparticle sintering"" "subject:"ṉanoparticle sintering""
1 |
Investigating Thermal Transformations of Ligand-Stabilized Gold Nanoparticles: Influence of the Structural Attributes of the Nanoparticle and Its Environment on Thermal StabilitySmith, Beverly 18 August 2015 (has links)
Ligand-stabilized metal nanoparticles (LSNPs) have garnered significant attention for use in applications including sensing, catalysis, and thin film fabrication. Many uses rely on the size-dependent properties of the metal nanoparticle core. Therefore, preservation of nanoparticle core size is of paramount importance. In other uses, the low processing temperatures afforded by metal LSNPs make them attractive as precursors for conductive thin films. In these distinctly different applications, understanding nanoparticle thermal stability is crucial.
A key finding of this research is that nanoparticle sintering is dependent upon both core size and ligand functionality. Multi-technique analysis of four types of gold nanoparticles (AuNPs) with different ligand compositions and core sizes illustrates that more volatile ligands reduce the onset temperature for sintering. Also, AuNPs of larger core size with the same ligand composition exhibit lower sintering onset temperatures. Correlation between measurements reveals that only a small amount of ligand loss is necessary to trigger rapid sintering and that ligands are excluded to the surface of the porous gold films.
AuNPs with ligand shells composed of two alkanethiols of different chain length and volatility indicate that the onset temperature of sintering can be tuned further through incorporation of a small amount of more volatile alkanethiol into a ligand shell of lower volatility. Mixed LSNPs further reveal that AuNP thermal stability depends upon the ligand shell composition and its intermolecular interactions, which can result in markedly different sintering behavior for different ligand compositions. Long-chain alkanethiol AuNPs sinter after only a small amount of ligand loss, whereas short-chain alkanethiol AuNPs sinter following complete ligand loss and the formation of metastable bare AuNPs. Heated AuNP films prepared with mixed-ligand AuNPs exhibit ligand-dependent differences in film morphology.
To probe AuNP thermal stability in 2D-assemblies, self-assembly using larger ‘marker’ nanoparticles enables the study of small 1.5 nm AuNP arrays with successive TEM monitoring throughout ex situ heating. Monitoring images of the same area shows short-range (1-2 nm) nanoparticle migration/coalescence. In contrast to 3D assemblies, AuNP growth occurs at temperatures as low as 60 °C.
This dissertation includes previously published and unpublished co-authored material. / 10000-01-01
|
Page generated in 0.107 seconds