• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Thermal Transformations of Ligand-Stabilized Gold Nanoparticles: Influence of the Structural Attributes of the Nanoparticle and Its Environment on Thermal Stability

Smith, Beverly 18 August 2015 (has links)
Ligand-stabilized metal nanoparticles (LSNPs) have garnered significant attention for use in applications including sensing, catalysis, and thin film fabrication. Many uses rely on the size-dependent properties of the metal nanoparticle core. Therefore, preservation of nanoparticle core size is of paramount importance. In other uses, the low processing temperatures afforded by metal LSNPs make them attractive as precursors for conductive thin films. In these distinctly different applications, understanding nanoparticle thermal stability is crucial. A key finding of this research is that nanoparticle sintering is dependent upon both core size and ligand functionality. Multi-technique analysis of four types of gold nanoparticles (AuNPs) with different ligand compositions and core sizes illustrates that more volatile ligands reduce the onset temperature for sintering. Also, AuNPs of larger core size with the same ligand composition exhibit lower sintering onset temperatures. Correlation between measurements reveals that only a small amount of ligand loss is necessary to trigger rapid sintering and that ligands are excluded to the surface of the porous gold films. AuNPs with ligand shells composed of two alkanethiols of different chain length and volatility indicate that the onset temperature of sintering can be tuned further through incorporation of a small amount of more volatile alkanethiol into a ligand shell of lower volatility. Mixed LSNPs further reveal that AuNP thermal stability depends upon the ligand shell composition and its intermolecular interactions, which can result in markedly different sintering behavior for different ligand compositions. Long-chain alkanethiol AuNPs sinter after only a small amount of ligand loss, whereas short-chain alkanethiol AuNPs sinter following complete ligand loss and the formation of metastable bare AuNPs. Heated AuNP films prepared with mixed-ligand AuNPs exhibit ligand-dependent differences in film morphology. To probe AuNP thermal stability in 2D-assemblies, self-assembly using larger ‘marker’ nanoparticles enables the study of small 1.5 nm AuNP arrays with successive TEM monitoring throughout ex situ heating. Monitoring images of the same area shows short-range (1-2 nm) nanoparticle migration/coalescence. In contrast to 3D assemblies, AuNP growth occurs at temperatures as low as 60 °C. This dissertation includes previously published and unpublished co-authored material. / 10000-01-01
2

Surface adsorption of natural organic matter on engineered nanoparticles

Jayalath Mudiyanselage, Sanjaya Dilantha 01 August 2018 (has links)
Nanoparticles have gained growing attention of the scientific community over the past few decades due to their high potential to be used in diverse industrial applications. Nanoparticles often possess superior characteristics, such as catalytic activity, photochemical activity, and mechanical strength, compared to their bulk counterparts, making them more desirable in different industrial applications. During the past few decades, the use of the nanoparticles in various industries has been increased. With increasing usage release of nanoparticles into the environment has also increased. There is a growing concern about the nanoparticle toxicity and numerous studies have shown the toxic effects of different nanoparticles on various plants, animals, and microorganisms in the environment. Toxicity of nanoparticles is often attributed to their morphology and their ability to undergo different transformations in the environment. These transformations include aggregation, dissolution, and surface adsorption. Natural organic matter (NOM) are the most abundant natural ligands in the environment which include Humic acid and Fulvic acid. These high molecular weight organic molecules have complex structures and contain many different functional groups such as carboxylic acid groups, hydroxyl, amino and phenolic groups that can interact with the nanoparticle surface. The nature and the intensity of the interaction are dependent on several factors including the size and the surface functionality of nanoparticles and pH of the medium. The smaller the nanoparticle, the higher the adsorption of NOM due to the high surface to volume ratio of smaller particles. Functional groups on the surface dictate the surface charge of the nanoparticles in water depending on the acidity. The higher the acidity, higher the adsorption of NOM due to increased electrostatic attractions between positively charged nanoparticles and the negatively charged NOM molecules. Adsorbed NOM on nanoparticles affect the other transformations such as aggregation and dissolution and can in turn alter the reactivity and toxicity of the nanoparticles. Therefore, effect of NOM is an important factor that should be considered in environmental toxicity related studies of nanoparticles.

Page generated in 0.1518 seconds