Spelling suggestions: "subject:"anoparticles boxicity testing"" "subject:"anoparticles bioxicity testing""
1 |
Microbial toxicity testing of inorganic nanoparticlesWiddowson, Alexandra January 2015 (has links)
NPs are toxic to a wide range of organisms across trophic levels; gram-positive and gram-negative bacteria (Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Escherichia coli), algae (Pseudokirchneriella subcapitata), crustaceans (Daphnia magna and Thamnocephalus platyurus), fish (rainbow trout, zebrafish, trout) and plants (Lactuca sativa L. and Raphanus sativus L). Due to their lack of target specificity, NPs may pose an environmental risk. The antibacterial properties of Ag and Cu nanoparticles (NP) are enhanced by their large reactive surface area, compared to bulk counterparts. Toxicity of NPs is attributed to their solubility and subsequent release of ions. However, the cytotoxic effects of NPs cannot always be attributed to the free ion fraction. The underpinning objective of this study was to link the response of microbial biosensors to detailed chemical analysis of NP dissolution products. NPs were suspended in Millipore water and in the presence of the steric stabiliser Na citrate and the resulting NP solubility characterised. Using chemical analysis this study quantified the flux of total dissolved metal (total [M]) and free metal ions [M+] from Ag and Cu NPs (Chapter 3). Two bioluminescent biosensors were used to assess the bioavailable metal fraction ([M]bio) of NP dissolution (Chapters 5 and 6). E. coli HB101 pUCD607 (bacterial) and M. citricolor (fungal) were chosen to represent NP toxicity across trophic levels using the same response mechanism. Additionally, the metal-induced bioreporter, P. fluorescens DF57-Cu15, was used to quantify the Cu bioavailability of Cu NP dissolution. By combining chemical and biological analysis this study inferred NP toxicity is not mass dependent, toxicity is dissolution dependent. Dissolution of Ag and Cu NPs in Millipore water was mostly in the [M+] form. This remained the case for Ag NPs in the presence of Na citrate. However, dissolution of Cu NPs in Na citrate was mostly as total [Cu]. This was due to Cu ions complexing readily with citrate. Toxicity of Ag NP dissolution in Millipore water was concentration dependent. Total [Ag] correlated with E. coli HB101 toxicity response. The addition of Na citrate reduced Ag NP dissolution and therefore reduced toxicity to E. coli HB101. M. citricolor was less sensitive than E. coli HB101 to the dissolution products of Ag NPs in Millipore water. However, the sensor was more sensitive to the dissolution of Ag NPs in Na citrate than E. coli HB101. Cu NPs were chemically stable in Millipore water. The bioreporter P. fluorescens DF57-Cu15 was not induced by Millipore suspensions and E. coli HB101 was not inhibited. However, M. citricolor responded to [Cu]bio of Millipore suspensions with a maximum 54% inhibition of bioluminescence. P. fluorescens DF57-Cu15 was induced by the dissolution products of Cu NPs with the addition of Na citrate, only at high NP concentrations (> 500 mg/L). [Cu]bio of the Na citrate suspensions was toxic to E. coli HB101. However, toxicity was greater for M. citricolor with a maximum biosensor inhibition of 83%. There was no correlation between total [Cu], [Cu2+] or [Cu]bio with the response of either biosensors nor the bioreporter. Interpretation of Ag and Cu NP toxicity was made possible by the combining of chemical and biological toxicity assessment. Dissolution of Ag NPs suspended in Millipore water could be attributed as the main factor in toxicity to E. coli HB101 because of the knowledge gained by chemical analysis. It also allowed the conclusion that NP dissolution was a key factor to toxicity in all cases but biological assessment attributed NP assimilation as a contributing factor. Biological assessment is vital as no chemical analysis can quantify [M]bio, especially when [M]bio was perceived differently by biosensors of different trophic levels and modes of action. Combining chemical and biological assessment in this study was essential for interpreting NP toxicity.
|
2 |
Developing rapid in vivo assays to investigate structure response relationshipsTruong, Lisa 24 August 2012 (has links)
Incorporation of nanoparticles (NPs) into consumer products is on the rise and human exposure to NPs is unavoidable. Currently, there is insufficient data to assess the safety of nanoparticles. I conducted a series of five studies using the zebrafish model to determine which NP components (i.e., core material or surface functionalization) contribute to biological responses and how ionic strength influences these results. The first study employed a systematic, rapid embryonic zebrafish assay to identify specific responses to precisely engineered lead sulfide (PbS-NPs) and gold nanoparticles (AuNPs) functionalized with different surface ligands. Lead sulfide nanoparticles functionalized with either 3-mercaptopropanesulfane (MT) or sodium 2,3-dimercaptopropanesulfonate (DT) ligands with nearly identical core sizes caused differential responses at the same concentration. I determined that the different responses were because MT-functionalized NPs released more soluble lead ions than DT-functionalized NPs due to different decomposition and oxidation rates. The second study investigated the different biological responses of three NPs identified during toxicity screening of a gold nanoparticle library. AuNPs functionalized with 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol (MEEE), induced differential biological responses in embryonic zebrafish at the same concentration. Exposure to MES-AuNPs induced sublethal effects, while TMAT-AuNPs were embryo-lethal and MEEE-AuNPs were benign. Gold tissue concentration was confirmed to be similar in exposed embryos using inductively coupled-mass spectrometry. Microarrays were used to gain insight to the causes of the different responses. This approach identified that MES- and TMAT-AuNPs perturbed inflammatory and immune responses. These differential biological responses may be due to misregulated transport mechanisms causing numerous downstream defects unique to each surface functional group‟s property. In the next study, I tested the long-term consequences of developmental exposure to TMAT-, MES, and MEEE-AuNPs, and showed that MES- and TMAT-AuNPs affected larval behavior that persisted into adulthood. During the course of these investigations, I found that high ion concentration in exposure solutions results in NP agglomeration, presenting a problem for NP testing in the zebrafish model. For the fourth study, I focused on solving this by determining that zebrafish can be raised in nearly ion-free media without adverse consequences. When 3-MPA-AuNPs were dispersed in this new low ionic media, I observed adverse responses in the embryonic zebrafish toxicity assay, but not when the NPs were suspended in high ionic media. Thus, I demonstrated that the media greatly influences both agglomeration rates and biological responses, but most importantly, that the zebrafish is insensitive to external ions. The fifth study focused on the adverse response observed when embryonic zebrafish were exposed to 3-MPA-AuNPs. Exposed larvae failed to respond to a touch in the caudal fin at 120 hours post fertilization (hpf). Addition of a neuromuscular stimulus, nicotine, revealed the exposed embryos were not paralyzed, but experienced a reduction in axonal projections. A global genomic analysis (RNA-seq) using embryos exposed to 3-MPA-AuNP and MEEE-AuNPs (non-toxic control) from 6 to 120 hpf suggested that neurophysiological and signal transduction processes were perturbed. Functional analysis of the data led to the hypothesis that the most elevated gene, early growth response 1 (EGR-1), impacts axonogenesis in the caudal fin, interfering with glutaminergic synapses and preventing the connection of sensory neurons and touch perception. Although MEEE-AuNPs did not cause morphological defects, the RNA-seq analysis identified that these NPs perturbed immune and inflammatory system processes. Collectively, these results suggest that surface functional groups drive the differential responses to nanomaterials. The five studies summarized here confirm that a systems toxicological approach using the zebrafish model enables the rapid identification of structure-activity relationships, which will facilitate the design of safer nano-containing products. / Graduation date: 2013
|
3 |
Size and surface area dependent toxicity of silver nanoparticles in zebrafish embryos (Danio rerio)Tuttle, George R. (George Reid) 30 October 2012 (has links)
Many studies addressing the toxicity of silver nanomaterials have found that smaller sized silver nanoparticles are usually more toxic to organisms and in cell culture than particles of larger sizes yet it is not entirely clear why. We investigated the size dependent toxicity of silver nanoparticles by measuring the response of embryonic zebrafish (Danio rerio) following exposure to a library of thirteen distinct silver nanoparticle size distributions with mean diameters between 8.9 nm and 112.6 nm. Data analysis using dose���response modeling revealed that silver nanoparticles (AgNP) induced embryo toxicity that is dependent on the total surface area and not on the mass or particle number in solution. Included in this study is a comparison between embryo toxicity induced by silver nitrate (AgNO���) and AgNPs for cardiovascular endpoints, as well as an investigation into the influence of the chorion on AgNP toxicity. This study demonstrates the importance of using alternative dose metrics in nanotoxicology, and highlights the value of using the embryonic zebrafish to explore nanomaterial structure activity relationships. / Graduation date: 2013
|
Page generated in 0.1169 seconds