Spelling suggestions: "subject:"nanoparticlespart2 resonance amaging"" "subject:"nanoparticlespart2 resonance damaging""
1 |
Synthesis and Characterization of Novel Inorganic Nanoparticles for Diagnostic and Therapeutic ApplicationsPerera, Vindya S. 18 November 2014 (has links)
No description available.
|
2 |
Využití částic oxidu titaničitého s fosfonáty v medicíně / Titaniun Dioxide - Phosphonate Assemblies as Medical NanoprobesŘehoř, Ivan January 2011 (has links)
Titanium Dioxide - Phosphonate Assemblies as Medical Nanoprobes Ivan Řehoř PhD. Thesis Abstract: Multimodal imaging-therapeutic nanoprobe TiO2@RhdGd was prepared and successfully used for in- vitro and in-vivo cell tracking as well as for killing of cancer cells in-vitro. TiO2 nanoparticles, 12 nm in diameter, were used as a core for phosphonic acid modified functionalities, responsible for contrast in MRI and optical imaging. The phosphonic acid derivatives, used for surface modification, allows for grafting extraordinarily high loads of irreversibly adsorbed molecules of both types in one step. The prepared probe shows very high 1 H r1 relaxivity value as well as relaxivity density value, both crucial parameters for its use in MRI. The presence of fluorescent dye in its structure allows for its visualization by means of fluorescence microscopy. The applicability of the probe was studied, using three living systems - mesenchymal stem cells, cancer HeLa cells and T-lymphocytes. The probe did not exhibit toxicity in any of these systems and its long time storage in a lysosomal compartment was confirmed. Labeled cells were successfully visualized in-vitro by means of fluorescence microscopy and MRI. Consequent visualization of labeled cells in-vivo by means of fluorescence microscopy was also achieved....
|
3 |
Nanoparticles for Bio-Imaging : Magnetic Resonance Imaging and Fluorescence ImagingVenkatesha, N January 2015 (has links) (PDF)
This thesis provides several nanomaterial systems that can be used as contrast agents in magnetic resonance imaging (MRI) and for optical fluorescence imaging. Nanoparticle systems described in this thesis fall under three categories: (a) graphene oxide-nanoparticle composites for MRI contrast agent application, (b) core-shell nanoparticles for MRI contrast agent
application and (c) nanoparticle systems for both MRI and optical fluorescence imaging. In the case of graphene oxide based nano-composites, the following observations were made: (i) in the case of graphene oxide-Fe3O4 nanoparticle composite, it was observed that high extent of oxidation of the graphene oxide and large spacing between the graphene oxide sheets containing Fe3O4 nanoparticles provides the optimum structure for yielding a very high transverse proton relaxivity value, (ii) in the case of graphene oxide-Gd2O3 nanoparticle composite, it was observed that this composite exhibits high value for both longitudinal and transverse relaxivity
values making it a potential materials for multi-contrast study of pathologies with a single agent,
(iii) in the case of graphene oxide-CoFe2O4 nanoparticle composites, it was observed that an increase in the reflux time of the reaction mixture containing this composite led to appreciable variations in the proton relaxivity values. Transverse relaxivity value of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity
value initially increased and then decreased with increase in the reflux time. In the case of coreshell nanoparticles for MRI contrast agent application two different core-shell systems were investigated. They are MnFe2O3-Fe3O4 core-shell nanoparticles and CoFe2O4-MnFe2O4 coreshell nanoparticles. Investigations of both the core-shell nanoparticle systems revealed that the
proton relaxivity value obtained in the dispersion of the core-shell nanoparticles was considerably greater than the proton relaxivity value obtained in the presence of single phase nanoparticles of the core and shell phases. Very high value of transverse relaxivity in the case core-shell nanoparticles was due to the large magnetic inhomogeneity created by the core-shell
nanoparticles in the water medium surrounding it. In the case of nanoparticle systems for both MRI and optical fluorescence imaging, two different systems were investigated. They were CoFe2O4-ZnO core-shell nanoparticles and Gd doped ZnS nanoparticles [Zn1-xGdxS, x= 0.1, 0.2 and 0.3] formed on graphene oxide sheets or coated with chitosan. In the case of CoFe2O4-ZnO core-shell nanoparticles it was observed that fluorescent CoFe2O4-ZnO core-shell nanoparticles with the unique geometry in which CoFe2O4 ferrite nanoparticles agglomerates were present
within larger sized hollow ZnO capsules yields very high value of transverse proton relaxivity when compared to the proton relaxivity value exhibited by the individual CoFe2O4-ZnO coreshell nanoparticles. In the case of Gd doped ZnS nanoparticles, two different systems were synthesized and the values of the longitudinal and transverse proton relaxivity obtained were compared. These systems were (i) graphene oxide- Zn1-xGdxS (x= 0.1, 0.2 and 0.3) nanoparticle
composites and (ii) chitosan coated Zn1-xGdxS (x= 0.1, 0.2 and 0.3) nanoparticles. It was
observed that Gd doped ZnS nanoparticles in both cases exhibit both longitudinal and transverse relaxivity values. The relaxivity values showed a clear dependence on the composition of the nanoparticles and the nanoparticle environment (presence and absence of graphene oxide). It was
also observed that Gd doped ZnS nanoparticle can be used for florescence imaging.
|
Page generated in 0.1032 seconds