• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et propriétés photoélectrochimiques de nanoparticules d’argent intégrées dans des films d’oxydes mésoporeux / Synthesis and photoelectrochemical properties of silver nanoparticles embedded in mesoporous oxides films

Couzon, Nelly 25 September 2018 (has links)
L’étude et la compréhension des interactions existantes entre semi-conducteur et nanoparticules métalliques sous irradiation est primordiale pour l’amélioration de leurs performances. Dans cette étude, trois composites oxydes semi-conducteur-métal ont été synthétisés : TiO2-Ag, Fe2O3-Ag et WO3-Ag. La synthèse des films mésoporeux de TiO2, Fe2O3 et WO3 a été effectuée par voie sol gel à l’aide de copolymères à bloc, avec la méthode d’auto-assemblage induit par évaporation (EISA). Les nanoparticules d’argent sont formées dans un deuxième temps par réduction chimique de sels dans la porosité des films. L’étude photo-électrochimique de ces composites a permis de mettre en évidence différents phénomènes : le potentiel d’électroréduction des ions Ag+ dans une matrice de TiO2 mésoporeuse peut être modulé par l’effet de la lumière. Ce phénomène semble résulter d’un effet de passivation des NP Ag par TiO2 qui dépend des conditions d’insolation. Des effets de rechargement de l’électrode poreuse en espèce Ag+ ont aussi été observés, sous l’action simultanée de la chrono-ampérométrie et de l’irradiation / The study and understanding of existing interactions between semiconductor and metal nanoparticles under irradiation is essential for improving their performance. In this study, three semiconductor-metal oxide composites were synthesized: TiO2-Ag, Fe2O3-Ag and WO3-Ag. The synthesis of the mesoporous films of TiO2, Fe2O3 and WO3 was carried out by gel sol method using block copolymers, with the method of self-assembly induced by evaporation (EISA). The silver nanoparticles are formed in a second time by chemical reduction of silver salts in the porosity of the films. The photo-electrochemical study of these composites made it possible to highlight various phenomena: the electroreduction potential of Ag+ ions in a mesoporous TiO2 matrix can be modulated by the effect of light. This phenomenon seems to result from a passivation effect of the NP Ag by TiO2, which depends on the insolation conditions. Charging effects of the porous electrode in Ag+ species have also been observed, under the simultaneous action of chrono-amperometry and irradiation
2

Ecoconception de nouveaux agents biocides à base de nanoparticules d'argent à enrobage bio-inspiré / Ecoconception of new biocidal agent made of silver nanoparticles with biomimetic coating

Marchioni, Marianne 15 October 2018 (has links)
Les nanoparticules d'argent sont de plus en plus utilisées dans les objets de consommation courante ainsi que dans les dispositifs médicaux pour leur activité biocide, qui est due au relargage d'ions Ag(I) au cours du temps. Le recul sur ces nano-objets et en particulier sur leur innocuité n'est toujours pas suffisant et les études sur leur transformation et leur impact in vivo sont sujets à d’intenses recherches. En effet, le devenir dans l’organisme des macro- et micro-matériaux étudiés classiquement n’est pas le même que celles des nanomatériaux. Les nanoparticules d’argent illustrent bien cette problématique : l’argent soluble injecté par voie intraveineuse est éliminé plus rapidement que la même quantité d’argent injectée sous forme nanoparticulaire. De plus, la concentration en argent retrouvée dans le sang et les organes est dix fois supérieure lorsque les nanoparticules d’argent sont injectées plutôt qu’ingérées. C'est pourquoi le développement de produits implantatoires qui se retrouvent donc en contact direct avec l’organisme, et qui contiennent des nanoparticules d’argent doit prendre en compte les risques associés, ce qui peut se faire par une approche Safer-by-design.Une des composantes principales du développement Safer-by-design concerne la fonctionnalisation des nano-objets. L’affinité des thiolates pour l’ion Ag(I) étant très forte, des ligands thiolés pourraient donc constituer une piste pour la fonctionnalisation des nanoparticules d’argent. Néanmoins, il est connu que les molécules thiolées conduisent à différents comportements allant de la dissolution de la nanoparticule d’argent en ions Ag(I) à la simple passivation de la surface de la nanoparticule ce qui peut entrainer la perte de son activité biocide.Ainsi, l’Ecoconception de Nouveaux Agents Biocides à base de Nanoparticules d’Argent à Enrobage Bio-inspiré avait pour objectif principal de poser les bases conceptuelles du développement d’un agent biocide Safer-by-design constitué de nanoparticules d’argent et de molécules thiolées en se positionnant à l’interface de plusieurs disciplines.Le développement de ce projet a nécessité d’étudier la réactivité de diverses molécules biologiques ou bio-inspirées thiolées avec les nanoparticules d’argent. Ainsi, nous avons mis en évidence l’importance de la pré-organisation architecturale des biomolécules dans la cinétique de dissolution, ainsi que le nombre de thiols libres dans la molécule. Dans le cas de composés induisant la dissolution des nanoparticules, sa cinétique augmente avec le nombre de thiols libres présents sur la molécule, et avec la pré-organisation du site de liaison du métal. Le projet principal de cette thèse a ensuite mené à la preuve de concept recherchée, avec le développement d’un nouvel agent biocide composé de nanoparticules d’argents pontées entre elles par un ligand thiolé tripode symétrique qui est le mime chimique d’un site de liaison d’une métallothionéine. Ces assemblages de nanoparticules se sont montrés actifs contre les bactéries (E. coli) et moins toxiques sur les cellules eucaryotes (HepG2), malgré une entrée dans les cellules similaire. Enfin, un criblage a également été réalisé avec des polyéthylèneglycols possédant un à huit thiols et des longueurs de polymères variables dans le but d’essayer de rationaliser les différences de comportement des nanoparticules d’argent en présence des molécules thiolées. Ce travail, a conduit à l’observation des comportements très variés qui vont permettre d’explorer de nouvelles voies de développements de biocides à base d’assemblages de nanoparticules médiés par des liaisons thiol – Ag(I).L’ensemble de ce travail de thèse a donc permis à la fois un travail très fondamental sur la réactivité des thiols vis-à-vis des atomes d’argent à la surface des nanoparticules et au développement de produits à potentiel applicatif, les assemblages de nanoparticules d’argent qui sont des biocides Safer-by-design. / Silver nanoparticles are increasingly used in everyday consumer goods as well as in medical devices for their biocidal activity, which is due to the release of Ag(I) ions over time. The hindsight on these nano-objects and, in particular, on their safety is still not sufficient and studies on their transformation and their impact in vivo is currently an intense research field. Indeed, the fate in the body of macro- and micro-materials studied classically is not the same as for nanomaterials. The case of the silver nanoparticles illustrates this problem: the soluble silver injected intravenously is eliminated faster than the same amount of silver injected in nanoparticular form. Moreover, the concentration of silver found in the bloodstream and organs is ten times higher when silver nanoparticles are injected rather than ingested. The development of silver nanoparticle-containing implanted devices, that get in direct contact with the body, must thus take into account the related risks. A Safer-by-design approach could be a way to solve this issue.One of the main components of Safer-by-design development is the functionalization of nano-objects. The affinity of the thiolates for Ag(I) ions is very high, which would make thiolated ligands a good tool for silver nanoparticle functionalization. However, it is known that the thiolated molecules lead to different behaviors, ranging from the dissolution of silver nanoparticles into Ag(I) ions to the simple passivation of the surface of the nanoparticles, which leads to the loss of their biocidal activity.The Ecodesign of New Biocidal Agents based on Silver Nanoparticles and Bio-inspired Coating is therefore at the interface of several research areas and its main objective was to lay the conceptual foundations for the development of a Safer-by-design biocidal agent based on the interaction between silver nanoparticles and thiolated molecules.The development of this project required to study the reactivity of various biological or bio-inspired thiolated molecules with silver nanoparticles. First of all, we have highlighted the importance of the architectural pre-organization of biomolecules in the dissolution kinetics, as well as the role of the number of free thiols in the molecule. In the case of molecules inducing the dissolution of the nanoparticles, its kinetics increases with the number of free thiols present on the molecule and with the pre-organization of the metal binding site. In a second time, the main project of this thesis was the development of a proof of concept of a new biocidal agent composed of silver nanoparticles bridged together via a thiolated ligand, which is the chemical mimic of one binding site of a metallothionein. These nanoparticle assemblies were active against bacteria (E. coli) and less toxic than silver nanoparticles on eukaryote cells (HepG2), despite a similar cellular entry. Finally, a screening was performed with polyethylene glycols having two to eight thiols and varying polymer lengths in an attempt to rationalize the differences in the behavior of silver nanoparticles in the presence of the thiolated molecules. This ongoing work leads to various behaviors that will enable to explore novel ways for the development of biocidal based on nanoparticles assemblies mediated by thiol – Ag(I) bonds.Therefore, this overall PhD work allows performing both very fundamental researches concerning the reactivity of thiols with surface silver atoms of the nanoparticles and the development of products with application potential, silver nanoparticle assemblies that are Safer-by-design biocide.
3

Décharge électrique à l'interface de deux liquides : application à la synthèse de nanoparticules

Mohammadi, Kyana 09 1900 (has links)
Les procédés plasma-liquide sont considérablement étudiés en raison de leur potentiel élevé dans la production de divers nanomatériaux, parmi d’autres applications technologiques. En plus d'un rendement relativement élevé (mg/min) et d'une infrastructure simplifiée, les mécanismes de synthèse sont directs. Le fait que les produits restent confinés dans la solution, la manipulation de nanomatériaux ne présente un danger ni aux vivants ni à l’environnement. Dans ce mémoire de maitrise, les méthodes les plus courantes pour la synthèse de nanomatériaux, en particulier les systèmes plasma-liquide, sont discutées. La formation de différents régimes de plasma dans des liquides, dont chacun a des caractéristiques et des applications différentes, est présentée. Ensuite, le système multi-liquide et ses caractéristiques, telles que les caractéristiques électriques et la dynamique de l’émission des décharges dans différentes conditions, sont exposés. Pour la synthèse de nanoparticules, on traite les décharges Sparks (étincelles) avec une attention particulière. Au lieu de les produire entre deux électrodes immergées dans un liquide diélectrique, les décharges sont produites dans un hydrocarbure liquide entre une électrode et une solution conductrice. Cette dernière est produite via l’ajout de nitrate d’argent dans l’eau. Le plasma, via ses espèces réactives, réduit les ions Ag+ en Ag0 qui forment ensuite les nanoparticules. La décomposition de l’hydrocarbure produit aussi des espèces carbonées qui se recombinent sous forme d’une matrice hydrocarbonée. En se basant sur différentes méthodes de caractérisations (FTIR, MEB, MET, UV-vis, etc.), nous identifions deux zones de réactions : dans le plasma dans l’heptane et à l’interface plasma-solution. Les produits dans la première zone sont majoritairement des nanoparticules (< 10 nm) d’Ag enrobées dans une matrice de carbone hydrogénée. Cependant, les produits dans la solution sont des nanoparticules d’Ag (sans matrice) ayant une distribution de taille de quelques dizaines de nanomètres. / Plasma-liquid systems are significantly investigated due to their high potential in the production of various nanomaterials, among other technological applications. In addition to relatively high efficiency in production (mg/min) and simplified infrastructure, the mechanisms of synthesis are rather direct. Also, because the products are confined in solution, the handling of the nanomaterials do not present risks to the living or to the environment. In this master thesis, the most common methods for nanomaterial synthesis, in particular plasma-liquid systems, are discussed. Formation of different plasma regimes in liquids, which each of them has different features and application, are explained. Then, the multiple liquid system and their feature such as electrical characteristics and emission dynamic of the discharges at different conditions, are investigated. To produce nanoparticles, we present the Spark discharges with special attention. Instead of their production between two electrodes immersed in a liquid dielectric, the discharges are produced in a liquid hydrocarbon between one electrode and a conductive solution. This latter is prepared by adding silver nitrate to water. The plasma, through its reactive species, reduces the ions Ag+ to Ag0 that produces nanoparticles. The decomposition of the hydrocarbon produces carbonaceous species that recombine as hydrocarbon matrix. Based on the different characterisation techniques (FTIR, SEM. TEM. UV-vis, etc.), we identified two zones of reactions: in plasma in heptane and at the interface plasma-solution. The products in the former zone are majority 10 nm-particles of Ag embedded in a hydrocarbon matrix, while the products in solution are Ag nanoparticles (without matrix) with size of several tens of nanometers.

Page generated in 0.0685 seconds