• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • Tagged with
  • 29
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation, Construction, and Testing of a Lloyd's Mirror Lithographic Interferometer

David J. Kortge (5930708) 12 February 2019 (has links)
<div>Fabrication of nanoscale highly periodic structures is a vital capability for research on quasicrystals, directional and specular selective emitters, and plasmonics. Laser interference lithography is a maskless lithography process capable of producing patterns with high periodicity over large areas, and is compatible with standard optical lithography processing. In this work, a Lloyd's mirror lithographic interferometer is simulated, built, and tested. Featuring a HeCd CW laser at 325 nm, spatial lter, and vacuum stage, it is capable of generating patterns with a sub-100 nanometer half pitch, over a large area (approximately 8 cm<sup>2</sup>), with minimal distortion, in a single exposure; with 2D patterns possible using multiple exposures. The interferometer features a compact sliding enclosure, simple alignment and operation, and quick adjustments to the desired period. One-dimensional and two-dimensional patterns were generated and matched well with simulation.</div>
12

Influence of Nanoscale Surface Modifications on the Fatigue Resistance of Medically Relevant Metals

Ketabchi, Amirhossein 07 May 2013 (has links)
With an increasingly aging population, a significant challenge in implantology is the creation of biomaterials that actively promote and accelerate tissue integration while offering excellent mechanical properties. Engineered surfaces with superimposed micro and nanoscale topographies showed great potential to control and direct biomaterial-host tissue interactions. However, these modified surfaces require a careful assessment to prevent potential adverse effects on the fatigue resistance, a factor which may ultimately cause premature failure of biomedical implants. In this context, the surfaces of two widely used biocompatible metals, namely CP Ti and Ti-6Al-4V, were engineered through simple yet efficient chemical treatments which demonstrated the ability to confer exciting new bioactive capacities. The qualitative and quantitative assessments of the fatigue resistance of polished and treated metals were carried out. Results from this study highlight the importance of mechanical considerations in the development and evaluation of nanoscale surface treatments for metallic biomedical implants.
13

Influence of Nanoscale Surface Modifications on the Fatigue Resistance of Medically Relevant Metals

Ketabchi, Amirhossein January 2013 (has links)
With an increasingly aging population, a significant challenge in implantology is the creation of biomaterials that actively promote and accelerate tissue integration while offering excellent mechanical properties. Engineered surfaces with superimposed micro and nanoscale topographies showed great potential to control and direct biomaterial-host tissue interactions. However, these modified surfaces require a careful assessment to prevent potential adverse effects on the fatigue resistance, a factor which may ultimately cause premature failure of biomedical implants. In this context, the surfaces of two widely used biocompatible metals, namely CP Ti and Ti-6Al-4V, were engineered through simple yet efficient chemical treatments which demonstrated the ability to confer exciting new bioactive capacities. The qualitative and quantitative assessments of the fatigue resistance of polished and treated metals were carried out. Results from this study highlight the importance of mechanical considerations in the development and evaluation of nanoscale surface treatments for metallic biomedical implants.
14

Nanostructuration contrôlée de films de polymères

Siretanu, Igor 21 October 2011 (has links)
Il est bien connu que la structuration de surface dans la nature est très importante et ses applications très répandues. Des modèles simples, comme les vagues de surface, sont indispensables dans certains processus naturels et peuvent avoir une application directe aux innovations technologiques. Dans cette thèse, j'étudie les nouvelles méthodes de structuration et de processus de formation de structures contrôlées dans des films minces de polymères, en particulier à des températures inférieures à leur transition vitreuse. J'ai trouvé que la surface de polystyrène vitreux peut être reconstruite à température ambiante, par application directe ou indirecte d'un champ électrique, suggérant fortement qu’une couche de mobilité accrue existe à la surface de ce polymère vitreux. De plus grâce à cette thèse, nous présentons une nouvelle méthode pour induire et contrôler des structures submicroniques sur des substrats hydrophobes en une seule étape de traitement simple, basée sur le traitement du substrat avec une solution aqueuse dégazée. Cette nanostructuration est le résultat d'adsorption des espèces chargées proches sur la surface hydrophobe des polymères créant un champ électrique élevé, ce qui, combiné avec la mobilité de la surface du polymère, induit la déformation du substrat polymère. Comme l'étude directe des propriétés spécifiques de cette région, proche de la surface libre de films minces de polymères, est très rare en raison de la limite des techniques expérimentales appropriées, j'ai réalisé une étude approfondie de la relaxation temporelle des surfaces polymères préalablement structurées par les méthodes décrites ci-dessus. / It is well known that the importance and the applications of surface structuration in Nature and in technology are widespread. Simple patterns, such as surface waves, are indispensable in some natural processes and may have direct application to technological innovations. In this thesis I investigate novel methods of structuring and control structure formation process in thin polymer films, particularly at temperatures lower than their glass transition. We have found that the surface of glassy polystyrene can be reconstructed at room temperature either by direct or indirect application of an electric field, strongly suggesting that a layer of enhanced mobility indeed exists at the surface of this glassy polymer. Additionally through this thesis we present a novel developed way to induce and control submicron structures on hydrophobic substrates by a single, simple treatment step based on treating the substrate with degassed aqueous solution. This nanostructuration is the result of close adsorption of charged species on the hydrophobic polymeric surface building a high electric field, which, combined with the mobility of the polymer surface, induces the deformation of the polymer substrate. Since, the direct study of properties of this specific near free surface region of thin polymer films is very rare due to the limited suitable experimental techniques; we have completed an extensive study of influence of supporting substrate and the temporal relaxation of previously polymer structured surfaces by above described methods.
15

Binary Planet–Satellite Nanostructure Using RAFT Polymer

Peng, Wentao 05 June 2020 (has links)
No description available.
16

Closed-loop nanopatterning and characterization of polymers with scanning probes

Saygin, Verda 24 May 2023 (has links)
There is a need to discover advanced materials to address the pressing challenges facing humanity, however there are far too many combinations of material composition and processing conditions to explore using conventional experimentation. One powerful approach for accelerating the rate at which materials are explored is by miniaturizing the scale at which experiments take place. Reducing the size of samples has been tremendously productive in biomedicine and drug discovery through standardized formats such as microwell plates, and while these formats may not be the most appropriate for studying polymeric materials, they do highlight the advantages of studying materials in ultra-miniaturized volumes. However, precise and controlled methods for handling diverse samples at the sub-femtoliter-scale have not been demonstrated. In this thesis, we establish that scanning probes can be used as a technique for realizing and interrogating sub-femtoliter scale polymer samples. To do this, we develop and apply methods for patterning materials with control over their size and composition and then use these methods to study material systems of interest. First, we develop a closed-loop method for patterning liquid samples using scanning probes by utilizing tipless cantilevers capable of holding a discrete liquid drop together with an inertial mass sensing scheme to measure the amount of liquid loaded on the probe. Using these innovations, we perform patterning with better than 1% mass accuracy on the pL-scale. While dispensing fluid with tipless cantilevers is successful for patterning pL-scale features and can be considered a candidate for robust nanoscale manipulation of liquids for high-throughput sample preparation, the minimum amount of liquid that can be transferred using this method is limited by number of factors. Thus, in the second section of this thesis, we explore ultrafast cantilevers that feature spherical tips and find them capable of patterning aL-scale features with in situ feedback. The development of methods of interrogating polymers at the pL-scale led us to explore how the mechanical properties of photocurable polymers depend on processing conditions. Specifically, we investigate the degree to which oxygen inhibits photocrosslinking during vat polymerization and how this effect influences the mechanical properties of the final material. We explore this through a series of macroscopic compression studies and AFM-based indentation studies of the cured polymers. Ultimately, the mechanical properties of these systems are compared to pL-scale features patterned using scanning probe lithography and we find that not only does oxygen prevent full crosslinking when it is present during the post-print curing, but the presence of oxygen during printing itself irreversibly softens the material. In addition to developing new methods for realizing ultra-miniaturized samples for study, the novel scanning probe methods in this work have led to new paradigms for rapidly evaluating complex interactions between material systems. In particular, we present a novel method to quantitatively investigate the interaction between the metal-organic frameworks (MOFs) and polymers by attaching a single MOF particle to a cantilever and studying the interaction force between this MOF and model polymer surfaces. Using this approach, we find direct evidence supporting the intercalation of polymer chains into the pores of MOFs. This work lays the foundation for directly characterizing the facet-specific interactions between MOFs and polymers in a high-throughput manner sufficient to fuel a data-driven accelerated material discovery pipeline. Collectively, the focus of this thesis is the development and utilization of novel scanning probe methods to collect data on extremely small systems and advance our understanding of important classes of materials. We expect this thesis to provide the foundation needed to transform scanning probe systems into instruments for performing reliable nanochemistry by combining controlled and quantitative sample preparation at the nanoscale and high-throughput characterization of materials. To conclude, we present an outlook about the necessary technological advancements and promising directions for materials innovations that stem from this work.
17

Deterministic Nanopatterning of Graphene Using an Ion Beam

Bruce, Henrik January 2022 (has links)
Graphene features a unique combination of exceptional properties and has emerged as one of the most promising nanomaterials for a variety of applications. The ability to structurally modify graphene with nanoscale precision enables the properties to be further extended. By introducing nanopores in the graphene lattice, nanoporous graphene can be used in high-performance electronic devices or as selective membranes for efficient molecular filtering. Although methods for deterministic nanopatterning already exists, key for the implementation of nanoporous graphene is the development of a scalable and customisable method of patterning graphene that does not require any lithographic mask that is introducing defects. In this project, a novel approach using a nanoporous mask and a broad beam of 20 keV Ar ions has been investigated. Masks with 60-600 nm circular pores have been fabricated, and by irradiating suspended graphene membranes grown by chemical vapor deposition (CVD) through the mask, nanoporous graphene has been deterministically generated. The masks are fabricated using electron beam lithography, and the pattern is highly customisable regarding pore size, pore distribution and areal coverage. In addition to perforating the graphene, the ion beam is also observed to significantly reduce the level of contamination on the graphene membrane. The proposed mechanism is the combination of electronic  sputtering of surface contaminants and the random diffusion that follows, with a low nuclear sputtering yield and to-site pinning of contaminants. An extension of this study could include a more comprehensive characterization of the nanoporous graphene obtained as well as further studies on the dependency of beam parameters.
18

Direct Nanoprototyping of Functional Materials via Focused Electron Beam

Riazanova, Anastasia January 2013 (has links)
During recent years the demand for nanoscale materials with tailor-made functional properties as bulk species, is continuously and progressively rising for such fields as e.g. micro- and nano-electronics, plasmonics, spintronics, bio-technology, bio-sensing and life sciences. Preserving and / or improving properties of functional materials with their simultaneous size reduction and high-resolution site-specific positioning is indeed very challenging, for both conductors and insulators. One of the advanced nanoprototyping methods that can be utilized for this purpose is the Electron-Beam-Induced Deposition, or shortly EBID. This process is based on a local decomposition by a focused electron beam of a precursor gas molecules adsorbed on the sample’s surface. The beauty of this method is that it gives a unique possibility of rapid creation of site-specific nanoscale 3D structures of precise shape in a single operation. It’s an additive process that can be easily combined with other patterns. However, besides all the benefits, EBID has some constraints, in particular low purity of the deposited materials, due to the organometallic nature of the used precursors. Chemical composition of EBID patterns is strongly dependent on the chosen gas chemistry, the substrate, many deposition parameters and post-treatment processes applied to the deposited structures. In our research we focused on deposition of Co, Au, SiO2, C, W and Pt, their purification and shape control. And this thesis presents an overview of our accomplishments in this field. Depending on the gas chemistry of interest, three major purification approaches of EBID-grown materials were tested out: - Post-deposition annealing: in air and in the controlled atmosphere, - Deposition onto a preheated substrate, - Deposition in the presence of reactive gases. As a result, a dramatic purity improvement was observed and a significant advancement was achieved in creation of high-purity gold, cobalt and silicon dioxide nanoscale structures. In particular: 1)   For the Me2Au(acac) precursor, we developed a nanofabrication routine combining application of wetting buffer layers, fine tuning of EBID parameters and subsequent post-annealing step, which led to formation of high-purity planar and high aspect ratio periodic Au nanopatterns. We also describe the adopted and gently adjusted wet etching method of undesirable buffer layer removal, required in some cases for the further device application. 2)   For the Co2(CO)8 precursor, in-situ seeded growth in conjunction with EBID at the elevated substrate temperature resulted in a deposition of pure nanocrystalline Co with magnetic and transport properties close to the bulk material. 3)   For the tetraethyl orthosilicate precursor, or shortly TEOS, assisting of the deposition process with the additional oxygen supply led to the EBID of carbon-free amorphous insulating Si-oxide, with the absorption and refraction properties comparable to those for fused silica. Several applications of EBID nanopatterns are also discussed. / <p>QC 20131028</p>
19

Large-Scale Patterned Oxide Nanostructures: Fabrication, Characterization and Applications

Wang, Xudong 28 November 2005 (has links)
Nanotechnology is experiencing a flourishing development in a variety of fields covering all of the areas from science to engineering and to biology. As an active field in nanotechnology, the work presented in this dissertation is mostly focused on the fundamental study about the fabrication and assembly of functional oxide nanostructures. In particular, Zinc Oxide, one of the most important functional semiconducting materials, is the core objective of this research, from the controlled growth of nanoscale building blocks to understanding their properties and to how to organize these building blocks. Thermal evaporation process based on a single-zone tube furnace has been employed for synthesizing a range of 1D nanostructures. By controlling the experimental conditions, different morphologies, such as ultra-small ZnO nanobelts, mesoporous ZnO nanowires and core-shell nanowire were achieved. In order to pattern the nanostructures, a large-scale highly-ordered nanobowl structure based on the self-assembly of submicron spheres was created and utilized as patterning template. The growth and patterning techniques were thereafter integrated for aligning and patterning of ZnO nanowires. The aligning mechanisms and growth conditions were thoroughly studied so as to achieve a systematic control over the morphology, distribution and density. The related electronic and electromechanical properties of the aligned ZnO nanowires were investigated. The feasibility of some potential applications, such as photonic crystals, solar cells and sensor arrays, has also been studied. This research may set a foundation for many industrial applications from controlled synthesis to nanomanufacturing.
20

Nanopatterned Tubular Collagen Scaffolds For Vascular Tissue Engineering

Zorlutuna, Pinar 01 July 2009 (has links) (PDF)
One of the major causes of death in developed countries is cardiovascular disease that affects small and medium sized blood vessels. In most cases autologous grafts have to be used which have limited availability. A functional tissue engineered vessel can be the ultimate solution for vascular reconstruction. Tissue engineered constructs with cells growing in an organized manner have been shown to have improved mechanical properties. In the present study collagen scaffolds with 650 nm, 500 nm and 332.5 nm wide channels and ridges were seeded with human vascular smooth muscle cells (VSMC) and human endothelial cells seperately and then co-cultured on tubular scaffolds. When the films were seeded with endothelial cells it was observed that nanopatterns do not affect cell proliferation or initial cell alignment / however, they significantly influenced cell retention under shear (fluid flow). While 35 &plusmn / 10 % of the cells were retained on unpatterned films, 75 &plusmn / 4 % was retained on 332.5 nm patterned films and even higher, 91 &plusmn / 5 % was retained on 650 nm patterned films. It was shown that nanopatterns as small as 332.5 nm could align the vascular smooth muscle cells (VSMC) and that alignment significantly improved mechanical properties. Presence of nanopatterns increased the ultimate tensile strength (UTS) from 0.55 &plusmn / 0.11 on Day 0 to as much as 1.63 &plusmn / 0.46 MPa on Day 75, a value within the range of natural arteries and veins. Similarly, Young&amp / #8217 / s Modulus values were ca. 4 MPa, again in the range of the natural vessels. Since the films would be ultimately rolled into tubes of collagen, nutrient transfer through the films is quite crucial. Diffusion coefficient for 4-acetaminophenol and oxygen through the collagen films were found to be 1.86 &plusmn / 0.39 x 10-7 cm2.s-1 and 5.41 &plusmn / 2.14 x 10-7 cm2.s-1, repectively in the unseeded form, and increased by 4 fold after cell seeding, which is comparable to that in natural tissues. When both cell types were co-cultured on the nanopatterned tubes (a both-side nanopatterned collagen tube), it was shown that on the outside of the tube VSMCs proliferated in an oriented manner and on the inside endothelial cells proliferated as a monolayer. Therefore, this study showed that cell guidance enhances the mechanical properties of engineered vessels, and help overcome the two most important challenges in vascular tissue engineering / the need for adequate mechanical properties and continuous lining of endothelial cells even under physiological shear stress.

Page generated in 0.0905 seconds