Spelling suggestions: "subject:"nanophotonics anda photonic crystals"" "subject:"nanophotonics ando photonic crystals""
1 |
Hybrid photonic crystal nanobeam cavities: design, fabrication and analysisMukherjee, Ishita 07 1900 (has links)
Photonic cavities are able to confine light to a volume of the order of wavelength of light and this ability can be described in terms of the cavity’s quality factor, which in turn, is proportional to the confinement time in units of optical period. This property of the photonic cavities have been found to be very useful in cavity quantum electrodynamics, for e.g., controlling emission from strongly coupled single photon sources like quantum dots. The smallest possible mode volume attainable by a dielectric cavity, however, poses a limit to the degree of coupling and therefore to the Purcell effect. As metal nanoparticles with plasmonic properties can have mode volumes far below the diffraction limit of light, these can be used to achieve stronger coupling, but the lossy nature of the metals can result in extremely poor quality factors. Hence a hybrid approach, where a high-quality dielectric cavity is combined with a low-quality metal nanoparticle, is being actively pursued. Such structures have been shown to have the potential to preserve the best of both worlds.
This thesis describes the design, fabrication and characterization of hybrid plasmonic – photonic nanobeam cavities. Experimentally, we were able to achieve a quality factor of 1200 with the hybrid approach, which suggests that the results are promising for future single photon emission studies. It was found that modeling the behaviour (resonant frequencies, quality factors) of these hybrid cavities with conventional computation methods like FDTD can be tedious, for e.g., a comprehensive study of the electromagnetic fields inside a hybrid photonic nanobeam cavity has been found to take up to 48 hours with FDTD. Hence, we also present an alternate method of analysis using perturbation theory, showing good agreement with FDTD. / Graduate
|
2 |
Enhancing Thermophotovoltaics via Selective Thermal Emitters and Radiative Thermal ManagementZhiguang Zhou (7908800) 25 November 2019 (has links)
Thermal radiation is a fundamental heat transfer process, with certain basic
aspects still not fully understood. Furthermore, tailoring its properties has potential to
affect a wide range of applications, particularly thermophotovoltaics (TPV) and radiative
cooling.
TPV converts heat into electricity using thermal radiation to illuminate a photovoltaic
diode, with no moving parts. With its realistic efficiency limit up to 50% (heat source at
1200 <sup>o</sup>C), TPV has garnered substantial interest. However, state-of-the-art TPV
demonstrations are still well below theoretical limits, because of losses from generating
and efficiently converting or recycling thermal radiation. In this thesis, tailored integrated
photonic crystal structures are numerically simulated to enhance the efficiency of solar
TPV. Next, a high-temperature thin-film Si-based selective absorber and emitter is
designed, fabricated and experimentally characterized. It exhibits great potential to open
up new applications, as it lends itself to large-scale production with substantial
mechanical flexibility and excellent spectral selectivity for extended time periods, even
when operating under high operating temperatures (600 <sup>o</sup>C) for up to 6 hours, with
partial degradation after 24 hours. To perform this high-temperature characterization, an
emittance measurement setup has been built; its performance agrees well with
numerical simulations.
Second, a unique passive cooling mechanism known as radiative cooling is developed
to reduce the operating temperature of the photovoltaic diode. The significant effect of
radiative cooling as a complement for an all-passive-cooling TPV system is proposed
and numerically analyzed under a range of conditions. Furthermore, an outdoor
experiment has been performed to demonstrate the effect of radiative cooling on a
concentrating photovoltaic system, which can potentially be applied to the thermal
management of a TPV system. In summary, this work paves the way towards the
development of reliable, quiet, lightweight, and sustainable TPV and radiatively cooled
power sources for outdoor applications.
|
Page generated in 0.113 seconds