• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 601
  • 62
  • 29
  • 13
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 939
  • 484
  • 329
  • 304
  • 288
  • 232
  • 177
  • 107
  • 85
  • 84
  • 80
  • 80
  • 79
  • 69
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

The neural circuit basis of learning

Kaifosh, Patrick William John January 2016 (has links)
The astounding capacity for learning ranks among the nervous system’s most impressive features. This thesis comprises studies employing varied approaches to improve understanding, at the level of neural circuits, of the brain’s capacity for learning. The first part of the thesis contains investigations of hippocampal circuitry – both theoretical work and experimental work in the mouse Mus musculus – as a model system for declarative memory. To begin, Chapter 2 presents a theory of hippocampal memory storage and retrieval that reflects nonlinear dendritic processing within hippocampal pyramidal neurons. As a prelude to the experimental work that comprises the remainder of this part, Chapter 3 describes an open source software platform that we have developed for analysis of data acquired with in vivo Ca2+ imaging, the main experimental technique used throughout the remainder of this part of the thesis. As a first application of this technique, Chapter 4 characterizes the content of signaling at synapses between GABAergic neurons of the medial septum and interneurons in stratum oriens of hippocampal area CA1. Chapter 5 then combines these techniques with optogenetic, pharmacogenetic, and pharmacological manipulations to uncover inhibitory circuit mechanisms underlying fear learning. The second part of this thesis focuses on the cerebellum-like electrosensory lobe in the weakly electric mormyrid fish Gnathonemus petersii, as a model system for non-declarative memory. In Chapter 6, we study how short-duration EOD motor commands are recoded into a complex temporal basis in the granule cell layer, which can be used to cancel Purkinje-like cell firing to the longer duration and temporally varying EOD-driven sensory responses. In Chapter 7, we consider not only the temporal aspects of the granule cell code, but also the encoding of body position provided from proprioceptive and efference copy sources. Together these studies clarify how the cerebellum-like circuitry of the electrosensory lobe combines information of different forms and then uses this combined information to predict the complex dependence of sensory responses on body position and timing relative to electric organ discharge.
252

Structure-Conductivity Relationships in Group 14-Based Molecular Wires

Su, Timothy Andrew January 2016 (has links)
Single-molecule electronics is an emerging subfield of nanoelectronics where the ultimate goal is to use individual molecules as the active components in electronic circuitry. Over the past century, chemists have developed a rich understanding of how a molecule’s structure determines its electronic properties; transposing the paradigms of chemistry into the design and understanding of single-molecule electronic devices can thus provide a tremendous impetus for growth in the field. This dissertation describes how we can harness the principles of organosilicon and organogermanium chemistry to control charge transport and function in single-molecule devices. We use a scanning tunneling microscope-based break-junction (STM-BJ) technique to probe structure-conductivity relationships in silicon- and germanium-based wires. Our studies ultimately demonstrate that charge transport in these systems is dictated by the conformation, conjugation, and bond polarity of the σ-backbone. Furthermore, we exploit principles from reaction chemistry such as strain-induced Lewis acidity and σ-bond stereoelectronics to create new types of digital conductance switches. These studies highlight the vast opportunities that exist at the intersection between chemical principles and single-molecule electronics. Chapter 1 introduces the fields of single-molecule electronics, silicon microelectronics, and physical organosilane chemistry and our motivation for bridging these three worlds. Chapters 2-6 elaborate on the specific approach taken in this dissertation work, which is to deconstruct the molecular wire into three structural modules – the linker, backbone, and substituent – then synthetically manipulate each component to elucidate fundamental conductance properties and create new types of molecular conductance switches. Chapter 2 describes the first single-molecule switch that operates through a stereoelectronic effect. We demonstrate this behavior in permethyloligosilanes with methylthiomethyl electrode linkers; the strong σ-conjugation in the oligosilane backbone couples the stereoelectronic properties of the sulfur-methylene σ-bonds that terminate the molecule. Chapter 3 describes the electric field breakdown properties of C-C, Si-Si, Ge-Ge, Si-O, and Si-C bonds. The robust covalent linkage that the methylthiol endgroup forms with the electrodes enables us to study molecular junctions under high voltage biases. Chapter 4 unveils a new approach for synthesizing atomically discrete wires of germanium and presents the first conductance measurements of molecular germanium. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. Chapter 5 describes a series of molecular wires with π–σ–π backbone structures, where the π–moiety is an electrode–binding thioanisole ring and the σ–moiety is a triatomic α–β–α chain composed of C, Si, or Ge atoms. We find that placing heavy atoms at the α–position decreases conductance, whereas placing them at the β–position increases conductance. Chapter 6 demonstrates that silanes with strained substituent groups can couple directly to gold electrodes. We can switch off the high conducting Au-silacycle interaction by altering the environment of the electrode surface. These chapters outline new molecular design concepts for tuning conductance and incorporating switching functions in single–molecule electrical devices.
253

Ionizing Radiation Effects on Graphene Based Field Effects Transistors

Alexandrou, Konstantinos January 2016 (has links)
Graphene, first isolated in 2004 by Andre Geim and Konstantin Novoselov, is an atomically thin two-dimensional layer of hexagonal carbon that has been extensively studied due to its unique electronic, mechanical, thermal and optical properties. Its vast potential has led to the development of a wide variety of novel devices such as, transistors, solar cells, batteries and sensors that offer significant advantages over the conventional microelectronic ones. Although graphene-based devices show very promising performance characteristics, limited has been done in order to evaluate how these devices operate in a radiation harsh environment. Undesirable phenomena such as total dose effects, single event upsets, displacement damage and soft errors that silicon-based devices are prone to, can have a detrimental impact on performance and reliability. Similarly, the significant effects of irradiation on carbon nanotubes indicate the potential for related radiation induced defects in carbon-based materials, such as graphene. In this work, we fabricate graphene field effect transistors (GFETs) and systematically study the various effects of ionizing radiation on the material and device level. Graphene grown by chemical vapor deposition (CVD) along with standard lithographic and shadow masking techniques, was used for the transistor fabrication. GFETs were subjected to different radiation sources, such as, beta particles (electron radiation), gamma (photons) and ions (alpha, protons and Fe particles) under various radiation doses and energies. The effects on graphene’s crystal structure, transport properties and doping profile were examined by using a variety of characterization tools and techniques. We demonstrate not only the mechanisms of ionized charge build up in the substrate and displacement damage effects on GFET performance, but also that atmospheric adsorbents from the surrounding environment can have a significant impact on the radiation hardness of graphene. We developed different transistor structures that mitigate these effects and performed computer simulations to enhance even further our understanding of radiation damage. Our results show that devices using a passivation layer and a shielded gate structure were less prone to irradiation effects when compared to the standard back-gate GFETs, offering less performance degradation and enhanced stability over prolonged irradiation periods. This is an important step towards the development of radiation hard graphene-based devices, enabling operation in space, military, or other radiation sensitive environments.
254

The Synthesis and Surface Chemistry of Colloidal Quantum Dots

Campos, Michael Paul January 2017 (has links)
Colloidal semiconductor nanocrystals, also known as quantum dots, are an extraordinary class of material, combining many of the most attractive properties of semiconductors with the practicality of solution chemistry. As such, they lie at a unique interface between inorganic chemistry, organic chemistry, solid-state physics, and colloidal chemistry. The rapid advance in knowledge of quantum dots over the past 30 years has largely been driven by interest in their fundamental physical properties and their broad applicability to challenges in nanoscience. However, much less attention has been paid to the chemistry underlying these features. In this dissertation, we discuss the state of nanocrystal chemistry and new insights we have unlocked by taking a bottom-up, chemistry-based approach to nanocrystal synthesis. We will cover these in a case-by-case fashion in the context of four chapters. Chapter 1 covers our CdTe nanocrystal synthesis surface chemistry studies with an eye toward CdTe photovoltaic technology, in which the role of CdTe surfaces is poorly understood. CdTe nanocrystals are traditionally a difficult material to synthesize, particularly with well-defined surface chemistry. In order to enable quantitative surface studies, we looked upstream and re-evaluated CdTe synthesis from the ground up. We identified a CdTe precursor largely overlooked since 1990, cadmium bis(phenyltellurolate) (Cd(TePh)2), and harnessed its excellent reactivity toward a synthesis of CdTe nanocrystals solely bound by cadmium carboxylate (Cd(O2CR)2) ligands. We then use this well-defined material to show that Cd(O2CR)2 ligands bind less tightly to CdTe nanocrystals than CdSe nanocrystals. This finding holds promise for the development of photovoltaics from colloidal CdTe feedstocks. Chapter 2 covers a tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Controlling the size of nanocrystals produced in a given reaction is paramount to their use in opto-electronic devices, but the most widely used technique to control size is prematurely arresting crystal growth. We introduce a library of thiourea precursors whose organic substituents tune the rate of precursor conversion, which dictates the number of nanocrystals formed and the final nanocrystal size following complete precursor conversion. We use PbS as a model system to 1) demonstrate the concept of kinetically controlled nanocrystal size, 2) quantify substituent trends, and 3) optimize multigram scale syntheses. We then expand the thiourea methodology to a broad range of materials and nanocrystal morphologies. This work represents a paradigm shift that will greatly accelerate the pace of progress in nanocrystal science as it transitions from academia to a multibillion-dollar industry. Chapter 3 covers an analogously tunable library of substituted selenourea precursors, but focuses on the synthesis of PbSe nanocrystals. PbSe nanocrystal synthesis is notoriously low-yielding and poorly tunable, but the remarkable properties of PbSe nanocrystals in photovoltaics and electrical transport have driven interest in the material for decades. We develop a library of N,N,N’-trisubstituted selenourea precursors and leverage their fine conversion rate tunability to synthesize PbSe nanocrystals of many sizes in quantitative yields. Interestingly, the nanocrystals produced in this reaction are demonstrably less polydisperse than literature samples, exhibiting absorption linewidths approaching the single-particle limit. We quantify this narrowness using a transient absorption spectroscopy technique called spectral hole burning. Chapter 4 covers our efforts to dig deeper into nanocrystal nucleation and growth and use that new knowledge to develop luminescent downconverters ready for on-chip integration into LED lighting. By studying early time points in PbS and PbSe nanocrystal synthesis, we estimate solute concentrations, nucleation thresholds, and nanocrystal growth rates. In particular, we find that metal selenides and sulfides have very different nucleation and growth behavior, as well as that PbS nucleation is a surprisingly slow process. The lessons learned from these fundamental experiments have enabled us to rapidly develop red-emitting CdS/CdSe/CdS “spherical quantum well” emitters whose photoluminescence quantum yields are 90 – 95%.
255

Experimental Study of Nano-materials (Graphene, MoS2, and WSe2)

Zhang, Fan January 2018 (has links)
Since the successful isolation of graphene in 2004, two-dimensional (2D) materials have become one of the hottest research fields in material science. My research is about two kinds of popular 2D materials--graphene and transition metal dichalcogenides (TMDCs). Making graphene into nanoribbons has been predicted and demonstrated to be an effective way to open a bandgap in this pristinely zero-bandgap 2D material. But the rough edge condition of etched graphene nanoribbons has always been a big issue adversely affecting electron transport performance. The electron mean free path of this kind of devices is usually way below the channel width. By using a dual-gate structure based on bilayer graphene/hexagonal boron nitride heterostructure, we found a way to form 300nm-wide conducting channels with high aspect ratio (>15) that can achieve ballistic transport, indicating perfect edge conditions. As the first star member of TMDCs family, monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. We conduct the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90 degrees. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. Monolayer WSe2, another popular TMDC, has also attracted much recent attention. In contrast to the initial understanding, the minima of the conduction band are predicted to be spin split. Because of this splitting and the spin-polarized character of the valence bands, the lowest-lying excitonic states in WSe2 are expected to be spin-forbidden and optically dark. We show how an in-plane magnetic field can brighten the dark excitonic states and allow their properties to be revealed experimentally in monolayer WSe2. In particular, precise energy levels for both the neutral and charged dark excitons were obtained. Greatly increased emission and valley lifetimes were observed for the brightened dark states as a result of their spin configuration.
256

Engineered Two-Dimensional Nanomaterials for Advanced Opto-electronic Applications

Arefe, Ghidewon January 2018 (has links)
Two dimensional (2D) materials have unique properties that make them exciting candidates for various optical and electronic applications. Materials such as graphene and transition metal dichalcogenides (TMDCs) have been intensively studied recently with researchers racing to show advances in 2D device performance while developing a better understanding of the material properties. Despite recent advances,there are still significant roadblocks facing the use of 2D materials for real-world applications. The ability to make reliable, low-resistance electrical contact to TMDCs such as molybdeum disulfide (MoS22) has been a challenge that many researchers have sought to overcome with novel solutions. The work laid out in this dissertation uses novel techniques for addressing these issues through the use of improved device fabrication and with a clean, and potentially scalable doping method to tune 2D material properties.A high-performance field-effect transistor (FET) was fabricated using a new device platform that combined graphene leads with dielectric encapsulation leading to the highest reported value for electron mobility in MoS2. Device fabrication techniques were also investigated and a new, commercially available lithography tool (NanoFrazor) was used to pattern contacts directly onto monolayer MoS2. Through a series of control experiments with conventional lithography, a clear improvement in contact resistance was observed with the use of the NanoFrazor. Plasma-doping, a dry and clean process, was investigated as an alternative to traditional wet-chemistry doping techniques. In addition to developing doping parameters with a chlorine plasma treatment of graphene, a series of experiments on doped graphene were conducted to study its effect on optical properties. Whereas previous studies used electrostatic gating to modify graphene’s optical properties, this work with plasma-doped graphene showed the ability to tune absorbence and plasmon wavelength without the need for an applied bias opening the door to the potential for low-power applications. This work is a just small contribution to the larger body of research in this field but hopefully represents a meaningful step towards a greater understanding of 2D materials and the realization of functional applications.
257

Single-Molecule Transistor from Graphene Nanoelectrodes and Novel Functional Materials From Self-assembly

Xu, Qizhi January 2017 (has links)
This thesis introduces a new strategy to fabricate single molecular transistor by utilizing the covalent chemistry to reconnect the molecule with the electroburnt graphene nanogap. We studied the effect of coupling chemistry and molecular length on the efficiency of reconnection between the molecule and the graphene. With this technique, we are also able to observe the Coulomb Blockade phenomenon, which is a characteristics of single-electron transistors. The high yield and versatility of this approach augur well for creating a new generation of sensors, switches, and other functional devices using graphene contacts. This thesis also introduces a new type of organic single-crystal p-n heterojunction inspired from the ball-and-socket shape-complementarity between fullerene and contorted dibenzotetrathienocoronene (c-DBTTC). We studied the influence of temperature, pressure, and time on the self-assembly process of contorted dibenzotetrathienocoronene on the as-grown fullerene crystals. We also utilized fluorescence microscopy to investigate the charge transfer in this type of p-n heterojunction. Finally, this thesis introduces one-dimensional and two-dimensional programming in solid-state materials from superatom macrocycles. We find that the linkers that bridges the two superatoms determine the distance and electronic coupling between the two superatoms in the macrocycle, which in turn determines the way they self-assembled in the solid-state materials. The thesis is composed of four chapters. The first chapter introduces why we are in terested in molecular transistors and new functional materials, and what has been done so far. The second chapter described the approach we developed to assemble single molecule into circuits with graphene electrodes. The third chapter details the method to fabricate the organic single-crystal C60-DBTTC p-n heterojunction, which is of great importance to understand their charge transfer process. The last chapter introduced a new series of superatom macrocycles and their self-assembly into solid-state materials with electron acceptor tetracyanoethylene.
258

Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings

Bagge-Hansen, Michael 01 January 2011 (has links)
Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. at the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime >800 hours. The work function (&phis;) of CNS and other carbonaceous cathode materials has been reported to be &phis;∼4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of field emission.;Initially, the intrinsic CNS field emission was studied. The mean height of the CNS was observed to decrease as a function of operating time at a rate of ∼0.05 nm/h (I 1∼40 muA/mm2). The erosion mechanism was studied using a unique UHV diode design which allowed line-of-site assessment from the field emission region in the diode to the ion source of a mass spectrometer. The erosion of CNS was found to occur by impingement of hyperthermal H and O neutrals and ions generated at the surface oxide complex of the Cu anode by electron stimulated desorption. Techniques for minimizing this erosion are presented.;The Mo2C (&phis;∼3.7 eV) beading on CNS at previously reported carbide formation temperatures of ∼800??C was circumvented by physical vapor deposition of Mo and vacuum annealing at ∼300??C which resulted in a conformal Mo2C coating and stable field emission of 1∼50 muA/mm2. For a given applied field, the emission current was >102 greater than uncoated CNS.;ThO2 thin film coatings were presumed to be even more promising because of a reported work function of &phis; ∼2.6 eV. The fundamental behavior of the initial oxidation of polycrystalline Th was studied in UHV (p<1x10-11 Torr), followed by studies of thin film coatings on Ir and thermionic emission characteristics. Although a work function of 3.3 eV was determined by a RichardDushman plot, activation of the thin film was not achieved at T<1700??C. Rather, the deposited ThO2 film decomposed, surface diffused and aggregated into stable ThO2(111) crystallites.;Thin film ThO2 coatings deposited on CNS initially demonstrated excellent field emission (up to ∼2 muA/mm2) and apparently activated spontaneously without significant thermal energy. Fowler-Nordheim plots suggested a work function of &phis; ∼2.6 eV. Undesired beading and ThO2 surface diffusion away from active emission sites resulted in rapidly deteriorating performance at higher field emission currents. Techniques that should provide a more stable ThO2/CNS conformal coating are presented.;The impact of thin films of Mo2C and ThO2on the magnitude of field emission from carbon nanosheets (CNS) was substantial. For a given field emission current density, J ∼2 muA/mm 2, the necessary applied field for uncoated CNS was ∼12 V/mum, but only ∼8 V/mum when coated with Mo2C (&phis;∼3.7 eV) and ∼5 V/mum when coated with ThO2 (&phis;∼2,6 eV). The mechanism for enhanced emission and the stability of the coatings are discussed, with special focus on the activation of ThO2 thin films. The major limitation observed in these studies has been the difference in surface energy of the graphene and the coatings which resulted in a tendency for the films to bead and separate from active emission sites at elevated currents. Suggested techniques to prevent this unwanted surface diffusion are presented.
259

Investigation into Effects of Instability and Reactivity of Hydride-Passivated Silicon Nanoparticles on Interband Photoluminescence

Radlinger, Christine Marie 24 May 2017 (has links)
While silicon has long been utilized for its electronic properties, its use as an optical material has largely been limited due to the poor efficiency of interband transitions. However, discovery of visible photoluminescence (PL) from nanocrystalline silicon in 1990 triggered many ensuing research efforts to optimize PL from nanocrystalline silicon for optical applications. Currently, use of photoluminescent silicon nanoparticles (Si NPs) is commercially limited by: 1) the instability of the energy and intensity of the PL, and 2) the low quantum yield of interband PL from Si NPs. Herein, red-emitting, hydrogen-passivated silicon nanoparticles (H-Si NPs) were synthesized by thermally-induced disproportionation of a HSiCl3-derived (HSiO1.5)n polymer. The H-Si NPs produced by this method were then subjected to various chemical and physical environments to assess the long-term stability of the optical properties as a function of changing surface composition. This dissertation is intended to elucidate correlations between the reported PL instability and the observed changes in the Si NP surface chemistry over time and as a function of environment. First, the stability of the H-Si NP surface at slightly elevated temperatures towards reactivity with a simple alkane was probed. The H-Si NPs were observed by FT-IR spectroscopy to undergo partial hydrosilylation upon heating in refluxing hexane, in addition to varying degrees of surface oxidation. The unexpected reactivity of the Si surface in n-hexane supports the unstable nature of the H-Si NP surface, and furthermore implicates the presence of highly-reactive Si radicals on the surfaces of the Si NPs. We propose that reaction of alkene impurities with the Si surface radicals is largely responsible for the observed surface alkylation. However, we also present an alternate mechanism by which Si surface radicals could react with alkanes to result in alkylation of the surface. Next, the energy and intensity stability of the interband PL from H-Si NPs in the presence of a radical trap was probed. Upon addition of (2,2,6,6,-tetramethyl-piperidin-1-yl)oxyl (TEMPO), the energy and intensity of the interband transition was observed to change over time, dependent on the reaction conditions. First, when the reaction occurred at 4ºC with minimal light exposure, the interband transition exhibited a gradual hypsochromic shift to between 595 nm and 655 nm, versus the λmax of the original low energy emission peak at 700 nm, depending on the amount of TEMPO in the sample. Second, when the reaction proceeded at room temperature with frequent exposure to 360 nm irradiation, the original interband transition at 660 nm was quenched while a new peak at 575 nm developed. Based on all the data collected and analyzed, we assign the 595 -- 655 nm transition as due to interband exciton recombination from Si NPs with reduced diameters relative to the original Si NPs. We furthermore assign the 575 nm transition as due to an oxide-related defect state resulting from rapid oxidation of photo-excited Si NPs.
260

Investigation of the Acoustic Response of a Confined Mesoscopic Water Film Utilizing a Combined Atomic Force Microscope and Shear Force Microscope Technique

Kozell, Monte Allen 17 July 2018 (has links)
An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the ability to generate and observe acoustic response of the mesoscopic water layer.

Page generated in 0.0576 seconds