Spelling suggestions: "subject:"nanospirals"" "subject:"nanospiral""
1 |
Fabrication and Characterization of Sculptured Thin Silver FilmsGustafson, Johan January 2013 (has links)
In this work samples with silver nanocolumnar structures were successfully fabricated by glancingangle deposition. From SEM investigations of the samples it is concluded that distinct andseparated nanocolumns can be grown without pre-patterned substrates using this method (givensuitable deposition conditions). The sample that exhibits the most distinct and well separatedcolumns was modelled using HFSS with optical properties of silver in nanocolumns obtained bymeasurements on the samples grown by glancing angle deposition, thin enough to not havedeveloped columns. From numerical calculations it was shown that the unit cell arrangement of thecolumns has a large influence on the optical characteristics. It was found that a diamond-like unitcell designed as two identical square lattices shifted by half the lattice spacing in one direction and2-1/2 times the lattice spacing of the other direction gives the best and a fair agreement to theexperimental ellipsometry data. Based on this model calculations were made to determine thewavelength dependent average local current exhibited in the columns as well as the currentdensity. This study showed the occurrence of broadbanded plasmon resonances of longitudinalmode at λ=1363 nm and of transverse mode at λ=545 nm. It was also shown that the opticalcharacteristics are strongly polarization dependent as is expected for such anisotropic samples.
|
2 |
Growth and Characterization of Al1-xInxN NanospiralsEkeroth, Sebastian January 2013 (has links)
In this work columnar nanospirals of AlInN were grown on top of TiN-coated sapphire substrates by magnetron sputtering. A variety of samples with different growth parameters were fabricated and investigated. The main objectives in this work were to optimize the degree of circular polarization and to control the active wavelength region for where this polarization effect occurs. Attempts were made to achieve a high degree of circular polarization in both reflected and transmitted light. It is shown that for reflected light it is possible to achieve a high degree of circular polarization within the visible wavelength regions. For transmitted light the concept of achieving circularly polarized light is proven.
|
Page generated in 0.0256 seconds