• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid Nanostructures for Artificial Machine Olfaction

Oakes, Landon Joseph 01 May 2012 (has links)
The detection of low level concentrations of particles in a gaseous environment is of importance to many fields, especially Homeland Security. The ability to identify ppb concentrations of explosives and their degradation products can aid in the detection of improvised explosive devices (IEDs), ammunition dumps, or hidden explosives. One method of accomplishing this task is through the use of an array of chemiresistors in an electronic nose device. For this study, chemiresistors were constructed using 3-D silica nanospring mats with a contiguous film of ZnO nanocrystals and ZnO nanocrystals decorated by metallic nanoparticles. Samples with an average grain size of 15nm were found to be the most responsive and upon exposure to a gas flow of 20% O2 and 80% N2 with ~200 ppm of acetone and an operational temperature of 400 oC produced a relative change in conductance by a factor of 400. The addition of metal nanoparticles onto the surface of the ZnO nanocrystals produced a relative change in conductance by a factor of 1100. Under optimum conditions, sensing elements of this design exhibited well-defined spikes in conductance upon exposure to explosive vapors (TNT, TATP) at the ppb levels. The use of a pattern recognition system allowed discrimination between three analyte chemicals.
2

Characterizing the Condensation Heat Transfer Performance of Uniform and Patterned Silica Nanospring-Coated Tubes

Schmiesing, Nickolas Charles 14 May 2019 (has links)
No description available.
3

Development of New Platinum-Based Anticancer Agents Targeting Ovarian Cancer Stem Cells

Stilgenbauer, Morgan Grasselli 26 July 2020 (has links)
No description available.
4

Synthesis and characterization of zinc oxide nanostructures for piezoelectric applications

Hughes, William L. 24 August 2006 (has links)
Union between top-down and bottom-up assembly is inevitable when scaling down physical, chemical, and biological sensors and probes. Current sensor/probe-based technologies are firmly founded on top-down manufacturing, with limitations in cost of production, manufacturing methods, and material constraints. As an alternative to such limitations, contemporary synthesis techniques for one-dimensional nanostructures have been combined with established methods of micro-fabrication for the development of novel tools and techniques for nanotechnology. More specifically, this dissertation is a systematic study of the synthesis and characterization of ZnO nanostructures for piezoelectric applications. Within this study the following goals have been achieved: 1) rational design and control of a diversity of novel ZnO nanostructures, 2) improved understanding of polar-surface-dominated (PSD) phenomena among Wurtzite crystal structures, 3) confirmation of Taskers Rule via the synthesis, characterization, and modeling of polar-surface-dominated nanostructures, 4) measurement of the surface-charge density for real polar surfaces of ZnO, 5) confirmation of the electrostatic polar-charge model used to describe polar-surface-dominated phenomena, 6) dispersion of ZnO nanobelts onto the selective layers of surface acoustic wave (SAW) devices for gas sensing applications, 7) manipulation of ZnO nanostructures using an atomic force microscope (AFM) for the development of piezoelectric devices, 8) fabrication of bulk acoustic resonator (BAR) and film bulk acoustic resonator (FBAR) devices based on the integrity of individual ZnO belts, 9) electrical characterization of a ZnO belt BAR device, 10) prediction and confirmation of the electrical response from a BAR device using a one-dimensional Krimholt-Leedom-Matthaei (KLM) model, and 11) development of a finite element model (FEM) to accurately predict the electrical response from ZnO belt BAR and FBAR devices in 3D.

Page generated in 0.0772 seconds