• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 337
  • 106
  • 60
  • 39
  • 18
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 704
  • 557
  • 129
  • 120
  • 98
  • 86
  • 82
  • 77
  • 72
  • 62
  • 55
  • 52
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

OPTIMIZING GROWTH CONDITIONS FOR CHEMICAL VAPOR DEPOSITION OF SINGLE-WALLED CARBON NANOTUBES

McVay, Stanton W 01 January 2004 (has links)
Carbon nanotubes present enormous potential for future nanoelectronic applications. This study details one method for producing such nanotubes via chemical vapor deposition (CVD) of methane gas at high temperatures. This method represents the best known way to selectively place nanotubes, as will be needed for complex electronic structures. Various growth conditions are manipulated and the effects on the resulting nanotubes are recorded.
62

Carbon Nanotubes as Versatile Devices for Detoxification and Cellular Entry

Donkor, David Apraku January 2012 (has links)
The ability to bypass most cellular barriers to gain access to intracellular compartments has great potential in cell biology. The possibilities range from efficient delivery of macromolecules such as plasmids to small proteins and oligonucleotides that are sensitive to degradation. In biomedicine, easy access means enhanced cellular imaging and delivery of many therapeutics currently hampered by poor stability and cellular uptake. Carbon Nanotubes (CNTs) are attractive in these applications due to their efficient cellular uptake. While mode of entry of CNTs into cells is debatable, possibly their natural shape allows for their selective penetration across biological barriers in a non-destructive way, making them versatile as membrane permeating particles. The present study explores the diverse functionalities of CNTs including: 1) Efficient delivery of DNA into HeLa cells using vertically aligned MWNT arrays, 2) The use of Single Walled Carbon Nanotubes (SWNTs) as nano detoxifiers and 3) the design of SWNTs for efficient cellular uptake. Generally, vertically aligned nanoneedles have been used to influence the behavior and differentiation of various cell types. In the first work described in chapter 2, periodic high-density array MWNT nanoneedles is shown to support cell growth and penetrate into HeLa cells, making it ideal for use in cellular imaging and the efficient delivery of plasmid DNA into cells. Most importantly, we show that transfection with the MWNT substrate exhibited more uniformity in comparison to the commercially available lipofection procedure. Lipofection involves the formation of a complex of DNA and cationic lipids that interact with the cell via electrostatic interactions, leading to internalization, DNA escape into the cytosol, and the eventual transport into the nucleus. Functionalized CNTS have demonstrated great biocompatibility and potential for drug delivery in vitro. In the work described in chapter 3, we synthesized acid-oxidized and non-covalently PEGlyated SWNTs, which were reported previously for drug delivery purposes, and explored their potential for detoxification in the bloodstream. We investigated the binding of SWNTs to a pore-forming toxin pyolysin. The SWNTs were found to prevent toxin-induced pore formation in the cell membrane of human red blood cells. Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin. Unlike HeLa cells, human red blood cells did not internalize oxidized SWNTs according to Raman spectroscopy data. Molecular modeling and circular dichroism measurements were used to predict the 3D structure of pyolysin (domain 4) and its interaction with SWNTs. The Tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin, a common construct in a large family of cholesterol-dependent cytolysins (CDCs), showed high affinity for SWNTs. In the final two chapters, chapters 4 and 5, we focused on shorter CNTs (<70 nm) that have less length variations. This enabled the determination of several length related characteristics such as cellular uptake and distribution of SWNTs within between cells. Here, cellular uptake of two water-soluble SWNTs, Short SWNTs (S_SWNTs) and Ultra-Short SWNTs (US_SWNTs), was evaluated against various mammalian cells. Cellular entry of S_SWNTs (chapter 4), similar in dimensions to those reported in the literature, is shown to be affected by their hydrophilic corona and exhibit time-dependent nuclear accumulation. In contrast, US_SWNTs show no dependence of cellular entry on their hydrophilic exterior (chapter 5). Furthermore, intracellular localization and excretion of the US_SWNTs is observed to be cell type-dependent. Results presented in this work show the potential of CNTs as nano detoxifiers. We also use CNTs as vertically aligned nanoneedles and as colloids to efficiently traverse the plasma membrane. While CNTs as nanoneedles show the potential as an efficient means of transfecting mammalian cells, the use of S_SWNTs and US_SWNTs highlight some key observations including the physical and chemical properties (size, surface functionality) and cell type influence on cellular uptake and intracellular trafficking. These findings contribute to the interpretation of SWNT-cell interactions by providing a correlation between CNT length and cellular uptake and also cell type on trafficking of internalized SWNTs. With the realization of the enhanced permeability and retention effects, tumor vascular leakiness resulting from increased angiogenesis and vasoactive factors enhancing permeability at the diseased site, nanoparticles that have long circulation time have higher chance of accumulating at the diseased sites.
63

Template-based Ferromagnetic Nanowires and Nanotubes: Fabrication and Characterization

Wei, Zhiyuan 03 October 2013 (has links)
This dissertation describes experimental studies of the structures and properties, and their correlations in ferromagnetic nanowires and nanotubes fabricated using porous templates. Ferromagnetic Ni and Fe nanowires with diameters 30 ~ 250 nm were electroplated into the pores of anodic aluminum oxide membranes. The effects of nanowire diameter on structural and magnetic properties were investigated. The microstructures of these nanowires were studied using X-ray diffraction and selected-area electron diffraction measurements. The magnetic properties of the nanowires were investigated using magnetic hysteresis measurements and magnetic force microscopy. Additionally, ferromagnetic Ni-P nanotubes were fabricated using an electroless chemical deposition method. Structure and composition analyses were conducted using X-ray diffraction and energy-dispersive spectroscopy. The magnetic properties of the nanotube arrays and the electronic properties of individual nanotubes were studied. Hysteresis measurements revealed that the 250-nm diameter Ni nanowires had a poor squareness in their hysteresis loops, indicating the existence of multi-domain states. In comparison, the squareness in the hysteresis loops of 60-nm and 30-nm Ni nanowires was much improved, suggesting the existence of single domain states in these smaller diameter nanowires. Magnetic force microscopy measurements confirmed the magnetic domain structures suggested by magnetic hysteresis measurements. Similar investigations of Fe nanowires with diameters of 250 nm and 60 nm found that they all have multidomain magnetic structures. This is expected based on their material properties and polycrystalline structures. Furthermore, magnetic structures of Y-branches and multi-wire clusters were also studied using magnetic force microscopy. The as-prepared Ni-P nanotubes had an amorphous structure. Following a heat treatment, however, a structural phase transformation from the amorphous phase to a crystalline phase was observed using X-ray diffraction measurements. The tetragonal crystalline phase of Ni3P and the face-centered-cubic phase of Ni were confirmed via simulations by the GSAS software. The high Ni3P content accounts for the semiconducting behavior and a low magnetic anisotropy observed in the Ni-P nanotubes.
64

High-frequency limits of carbon nanotube transistors

Chen, Li 11 1900 (has links)
This thesis is focused on the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). Such transistors show their promising performance in the nanoscale regime where quantum mechanics dominates. The short-circuit, common-source, unity-current-gain frequency ft is analyzed through regional signal-delay theory. An energy-dependent effective-mass feature has been added to an existing SP solver and used to compare with results from a constant-effective-mass SP solver. At high drain bias, where electron energies considerably higher than the edge of the first conduction sub-band may be encountered, ft for CNFETs is significantly reduced with respect to predictions using a constant effective mass. The opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by performing simulations for p-i-n and n-i-n CNFETs. This necessitated incorporating band-to-band tunneling into the SP solver. Finally, to help put the results from different CNFETs into perspective, a meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made. Band-to-band tunneling, which is a characteristic feature of p-i-n CNFETs, can also occur in n-i-n CNFETs, and it reduces the ft dramatically.
65

High-frequency limits of carbon nanotube transistors

Chen, Li 11 1900 (has links)
This thesis is focused on the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). Such transistors show their promising performance in the nanoscale regime where quantum mechanics dominates. The short-circuit, common-source, unity-current-gain frequency ft is analyzed through regional signal-delay theory. An energy-dependent effective-mass feature has been added to an existing SP solver and used to compare with results from a constant-effective-mass SP solver. At high drain bias, where electron energies considerably higher than the edge of the first conduction sub-band may be encountered, ft for CNFETs is significantly reduced with respect to predictions using a constant effective mass. The opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by performing simulations for p-i-n and n-i-n CNFETs. This necessitated incorporating band-to-band tunneling into the SP solver. Finally, to help put the results from different CNFETs into perspective, a meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made. Band-to-band tunneling, which is a characteristic feature of p-i-n CNFETs, can also occur in n-i-n CNFETs, and it reduces the ft dramatically. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
66

Synthesis Of Various Carbon Nanostructures And The Transport Properties Of Carbon Nanotubes

Singh, Laishram Tomba 11 1900 (has links) (PDF)
Different carbon nanostructures have different properties and different applications. It is needed to synthesize good quality and also on large scale. From the point of industrial applications, highly productive and low cost synthesis method is very essential. Research has been done extensively on the intrinsic and individual properties of both single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWC-NTs) in the range of nanometer to micrometer length scale. The important question is how the properties change beyond this length scale and if they are used in group in the form of an array instead of the individual carbon nanotubes (CNTs). Some applications require large current output, large energy production etc. For such kind of applications, it becomes essential to use CNTs in large number in the form of arrays or array, instead of using large numbers of CNTs in individual level. Future nanotechnology scope requires large scale application using the very rich intrinsic properties of the CNTs and nanomaterials. Keeping these problems and challenges in front, this thesis work is devoted to the research of the large scale synthesis of mm long MWCNTs, having different morphology and studies on various physical properties of MWCNTs in the form of arrays. Synthesis of mm long aligned and buckled MWCNTs have been reported for the first time. Generally buckled CNTs were obtained by compressing the straight CNTs. Apart from this, different morphologies like, aligned straight, helical or coiled CNTs are also synthesized. Resistance of the individual CNT increases with the increase in length. Resistance versus length of an array of CNT also shows similar behaviour. The thermal conductivity of CNT array is observed to decrease with the increase of array diameter (diameter �100 µm). There are few reports of the similar behaviour with the experiments done on small diameter CNT arrays (diameter �100 nm). From these observations, it seems that in the arrays of CNT, their intrinsic individual property is preserved though the magnitudes are different. The conductance measurements done on buckled CNT array by compressing it to apply uniaxial strain, shows the conductance oscillation. This conductance oscillation seems to be originating from the band gap change due to strain when the CNTs bend during compression. Recent research focuses on the arrays of CNT as they can carry large current of the order of several milliamperes that make the arrays suitable in nanoscale electronics and in controlling macroscopic devices such as light emitting diodes and electromotors. Regarding this aspect, a part of this thesis work is devoted on the application of CNT array to field effect transistor (FET) and study of thermoelectric power generation using CNT arrays. The entire thesis is based on the works discussed above. It has been organized as follows: Chapter 1 deals with introduction about the different carbon nanostructures and different synthesis methods. A brief introduction about the different current-voltage (IV) characteristics of SWCNTs and MWCNTs, length and diameter dependence and effect of the mode of contacts, are given. Some applications of the array of CNTs like buckling effect on compression, stretching of CNT into the form of rope, and conduction change on compression are discussed. Application of CNT as FET, as a thermometer, and thermoelectric effect of CNT are discussed. The electromechanical effect of CNT is also discussed briefly. Chapter 2 deals with experimental setup for synthesis of different morphologies of carbon nanostructures. The samples are characterized using common characterization techniques like, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A brief introduction about Raman Spectroscopy of CNT is given. Chapter 3 reports the unusual IV characteristics and breakdown of long CNT arrays. The current carrying ability and the threshold voltage as a function of array diameter are reported. The effect of the ambient like temperature and pressure are discussed. Chapter 4 deals with theoretical models to analyze the IV characteristics reported in Chapter 3. It has been shown that a set of classical equations are applicable to quantum structures and the band gap can be evaluated. Chapter 5 describes with application of CNT arrays as temperature sensors. It has been shown that CNT arrays of suitable diameters are used as temperature sensors after calibration. Chapter 6 reports the high current FET application of CNT arrays. Effects of temperature and ambient pressure are discussed. The type of the majority charge carrier is determined. Chapter 7 deals with application of CNT arrays as thermoelectric power generator to get large thermoelectric current. Effects of different array diameter are discussed. Modulation of thermoemf with gate voltage is discussed. The type of the majority charge carrier is determined. Chapter 8 reports the effect of compressive strain on buckled MWCNT arrays. Conductance is measured during the compression of the array. Quantum electromechanical conductance oscillation is observed. The structural changes are observed with SEM. Raman spectroscopic study supports the explanation of the effect. Chapter 9 provides the conclusion and overall summary of the thesis.
67

Structure-property relationships in polyurethane-carbon particle nanocomposites

Jirakittidul, Kittimon January 2013 (has links)
In this research work, the relationships between structure and properties in micro-composites and nano-composites of polyurethane (PU) and conductive carbon particles have been studied. PU is a class of block copolymers containing the urethane linkage (-NHCO-O-) within its structure. Most PU block copolymers consist of alternating ‘soft’ and ‘hard’ segments. The hard segment used in this study was based on 4,4’-methylenebisphenylisocyanate (MDI) and 2-methyl 1,3 propanediol (MP-Diol) which produced a stiff aromatic polyurethane. Two soft segments; poly(tetrahydofuran) (PTHF) and poly(propylene oxide) based polyol end-capped with ethylene oxide (PPO-EO) were used to study the effects of soft segment structure on PU properties. DMTA, DSC and modulated-DSC indicated that PU-PTHF had higher microphase separation due to greater immiscibility between PTHF and the MDI/MP-Diol hard segments. In order to improve the electrical and mechanical properties of PU, conductive carbon particles were incorporated. The critical factor was the dispersion of these conductive fillers in the PU matrix to obtain optimum properties. The first carbon filler studied was carbon black (CB). PU composites prepared by the adding of MP-Diol plus ultrasonication (MU) gave the best dispersion of CB aggregates resulting in higher thermal decomposition temperature and good conductivity. However, the mechanical toughness was reduced. In subsequent studies, PU composites incorporating three different treated multiwalled carbon nanotubes (MWCNT) were investigated. MWCNT were disentangled and shortened by ultrasonication and acid cutting treatments. The ultrasonicated MWCNT (MWCNT_U) had longer length than the acid-cut MWCNT (MWCNT_AC). Ultrasonication was the best technique for dispersing MWCNT since the storage modulus was increased by ~200% at low MWCNT_U loading and the toughness remained the same as unfilled PU. PU/MWCNT_AC nanocomposites at 1 – 3 wt% of MWCNT_AC exhibited similar electrical conductivities to unfilled PU at an order of 10-8 S/cm, implying that the acid cutting treatment might disturb the inherent conductivity in MWCNT. The conductive percolation thresholds of composites were determined following the percolation theory. It was found that the percolation thresholds for MWCNT-filled composites were significantly lower than that of CB-filled composites. The lowest percolation threshold was observed in MWCNT_U-filled composite at 0.31 wt%.
68

Low Percolation Threshold in Electrically Conductive Adhesives using Complex Dimensional Fillers

Taubert, Clinton J. January 2018 (has links)
No description available.
69

Ultrasonic Assisted Manufacturing of Carbon Nanotube Nanopaper Polymer Composites

ZHANG, DAN 01 October 2020 (has links)
No description available.
70

Static and Dynamic Thermal Behavior of Carbon Based Nanofluids

Al Samarrai, Omar Hashim 23 May 2013 (has links)
No description available.

Page generated in 0.0308 seconds