• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 337
  • 106
  • 60
  • 39
  • 18
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 704
  • 557
  • 129
  • 120
  • 98
  • 86
  • 82
  • 77
  • 72
  • 62
  • 55
  • 52
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development of Advanced Nanomanufacturing: 3D Integration and High Speed Directed Self-assembly

Li, Huifeng 2010 August 1900 (has links)
Development of nanoscience and nanotechnology requires rapid and robust nanomanufacturing processes to produce nanoscale materials, structures and devices. The dissertation aims to contribute to two major challenging and attractive topics in nanomanufacturing. Firstly, this research develops fabrication techniques for three dimensional (3D) structures and integrates them into functional devices and systems. Secondly, a novel process is proposed and studied for rapid and efficient manipulation of nanomaterials using a directed self-assembly process. The study begins with the development of nanoimprint lithography for nanopatterning and fabrication of 3D multilayer polymeric structures in the micro- and nano-scale, by optimizing the layer-transfer and transfer-bonding techniques. These techniques allow the integration of microfluidic and photonic systems in a single chip for achieving ultracompact lab-on-a-chip concept. To exemplify the integration capability, a monolithic fluorescence detection system is proposed and the approaches to design and fabricate the components, such as a tunable optical filter and optical antennas are addressed. The nanoimprint lithography can also be employed to prepare nanopatterned polymer structures as a template to guide the self-assembly process of nanomaterials, such as single-walled carbon nanotubes (SWNTs). By introducing the surface functionalization, electric field and ultrasonic agitation into the process, we develop a rapid and robust approach for effective placement and alignment of SWNTs. These nanomanufacturing processes are successfully developed and will provide a pathway to the full realization of the lab-on-a-chip concept and significantly contribute to the applications of nanomaterials.
52

The Adsorption of Methane on the CuSO4/Al2O3 Catalyst

Wang, Shih-Chieh 26 July 2000 (has links)
none
53

Computational Study of Catalyzed Growth of Single Wall Carbon Nanotubes

Zhao, Jin 14 January 2010 (has links)
A recently developed chemical vapor deposition (CVD) synthesis process called CoMoCAT yields single-wall carbon nanotubes (SWCNT)s of controlled diameter and chirality, making them extremely attractive for technological applications. In this dissertation, we use molecular dynamics simulations and density functional theory to study the selective growth mechanisms. In the CoMoCAT process, growth of SWCNTs happens on Co clusters with diameters of about 1 �. Effective force fields for Ni-C interactions developed by Yamaguchi and Maruyama for the formation of metallofullerenes and the reactive empirical bond order Brenner potential for C-C interactions are modified to describe interactions in such system. Classical molecular dynamics (MD) simulations using this force field are carried out to study the growth of SWCNT on floating and supported metal clusters. The effect of metal-cluster interactions on the growth process is discussed. The energy of forming one more ring at the open end of one-end-closed nanotubes with different chiralities, which is believed to be the basic step of nanotube elongation, are studied as a function of tube length. The energy and shape of the frontier highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of armchair nanotubes are studied and used to explain the change of reaction energy with tube length. Another property, the aromaticity of the rings forming a tube is also studied using Nucleus Independent Chemical Shift (NICS) as probe. NICS of rings in one-end-closed nanotubes with different chirality are studied as a function of tube length. NICS behavior of one-end-closed nanotube is compared with that of two-ends-open nanotube with the same chirality for nanotubes (6, 5) and (9, 1). Also (8, 3) nanotubes with one end open and the other end bonded to three different kinds of cap structures are compared. Since from both experimental observation and from our MD simulation results, the growth process of SWCNT can be affected by the interaction between Co clusters and their substrate, the performance of a series of CoN Clusters (N=1-4, 7, 10, 14, 15) adsorbed on MoC surface are studied with density functional theory.
54

The Study of Electromagnetic Shielding for Multiwall Carbon Nanotube Composites

Chang, Chia-Ming 12 February 2008 (has links)
The shielding effectiveness (SE) of the novel multiwall carbon nanotube (MWCNT) plastic composites is studied for the purpose of the electromagnetic interference (EMI) protection and the electromagnetic susceptibility (EMS) improvement in the application of the optical transmitter and receiver modules. The experimental results showed that the liquid crystal polymer (LCP) based MWCNT composites can exhibit a high SE of 38 dB ~ 45 dB within the frequency range of 1 GHz ~ 3 GHz. The shielding capability was demonstrated by examining the electromagnetic susceptibility performance of the optical transmitter and receiver modules, which were packaged by the MWCNT-LCP composites. The EMS performance was evaluated by eye diagram and bit-error-rate test in a 2.5 Gbps lightwave transmission system. The results showed that the MWCNT-LCP composite packaged modules with more weight percentage of the MWCNTs can exhibit a higher SE, and hence showed effective EMS performance, a better mask margin, and a lower power penalty. A novel polyimide (PI) plastic consisting of finely ionic liquid (IL) dispersed MWCNTs was also demonstrated to have high SE under a lower MWCNT loading. The experimental results showed that the IL dispersed MWCNT-PI composite can exhibit a high SE of 40 dB ~ 46 dB within the frequency range of 1 GHz ~ 3 GHz. By comparison, the composite fabricated by non-dispersed process required a higher loading of MWCNTs than the dispersed one. To understand the detailed intermolecular forces among MWCNTs, the dispersion mechanism of the MWCNTs is studied qualitatively. The aggregation of MWCNTs is from van der Waals forces among MWCNTs, and it can be dispersed by using IL dispersant. This is due to the predominant cation-
55

Metal-Free Carbon nanotube as the electrode materials of fuel cells

Chung, Ming-Hua 22 July 2008 (has links)
none
56

Mechanical Properties and Dynamic Behaviors of Single-Wall Carbon Nanotubes in Water and Vacuum environment: A Molecular Dynamics Study

Wu, Wen-Shian 03 September 2008 (has links)
Molecular dynamics theory and second reactive empirical bond order (REBO) potential are employed to determine the mechanical and dynamic properties of (10,10) and (17,0) single-wall carbon nanotubes (SWNT). According to the different simulated environment, the article can be divided into two parts and discussed. The mechanical properties of SWNT in vacuum environment are investigated by tensile process. The physical parameters can be obtained during the tensile process, for example, the yield stress and the Young¡¦s modulus. In addition, the slip vector can be used to investigate the dynamic behaviors of carbon nanotubes during the tensile process and the variation of microstructure after carbon nanotubes broken. Moreover, the mechanical properties of SWNT in the bulk water are also taken into account. In this section, we mainly investigate the effect of the structure of water molecules in the SWNT with different diameters of SWNT. Finally, the mechanical properties of SWNT influenced by water molecules inside the carbon nanotubes are investigated, and compare the results with those in vacuum environment.
57

High-frequency limits of carbon nanotube transistors

Chen, Li 11 1900 (has links)
This thesis is focused on the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). Such transistors show their promising performance in the nanoscale regime where quantum mechanics dominates. The short-circuit, common-source, unity-current-gain frequency ft is analyzed through regional signal-delay theory. An energy-dependent effective-mass feature has been added to an existing SP solver and used to compare with results from a constant-effective-mass SP solver. At high drain bias, where electron energies considerably higher than the edge of the first conduction sub-band may be encountered, ft for CNFETs is significantly reduced with respect to predictions using a constant effective mass. The opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by performing simulations for p-i-n and n-i-n CNFETs. This necessitated incorporating band-to-band tunneling into the SP solver. Finally, to help put the results from different CNFETs into perspective, a meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made. Band-to-band tunneling, which is a characteristic feature of p-i-n CNFETs, can also occur in n-i-n CNFETs, and it reduces the ft dramatically.
58

Études de la dispersion et de l'encapsulation des nanotubes de carbone en milieu aqueux

Zhong, Wei Heng 01 1900 (has links) (PDF)
Depuis leur découverte, les nanotubes de carbone (CNT) ont connu de nombreux succès en raison de leurs performances mécaniques, électriques et thermiques exceptionnelles. L'exploitation de ces propriétés requiert néanmoins de pouvoir isoler les CNT, de les manipuler et de les localiser au sein d'un matériau d'architecture plus ou moins complexe. Pour cela, il est souvent nécessaire de disperser les CNT en raison de leur très grande insolubilité dans tout solvant. De nombreuses stratégies de dispersion reposent sur la stabilisation des CNT par des tensioactifs. Cependant, très peu d'études visent à déterminer les forces colloïdales mises en jeu, un des paramètres clés de la dispersion. Ainsi, la dispersion des CNT reste souvent un art plutôt qu'un processus bien contrôlé et maîtrisé. Dans cette étude, le mécanisme d'adsorption en milieu aqueux de quatre tensioactifs usuels a été clarifié, en particulier grâce à la détermination de leur isotherme d'adsorption. En se basant sur les résultats d'adsorption, des dispersions concentrées et sans agrégats de CNT ont été préparées et ensuite utilisées pour la formulation des nanocomposites polymériques. Une seconde méthode de dispersion est basée sur l'encapsulation des CNT par une écorce polymérique. Alors que la majorité de telles méthodes requiert la modification covalente des CNT, ce qui entraîne la détérioration des propriétés des CNT, nous présentons une méthode de dispersion et d'encapsulation des CNT qui ne nécessite pas de modification covalente de leur surface. Cette méthode se base sur l'adsorption physique des polymères préparés par polymérisation par transfert de chaîne de type addition et fragmentation, appelée polymérisation RAFT. Cette procédure d'encapsulation est versatile et permet la formation d'une couche polymérique homogène et continue sur la surface des CNT. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : nanotubes de carbone (CNT), dispersion, isotherme d'adsorption, encapsulation, polymérisation RAFT.
59

Radiation Effects on Low-dimensional Carbon System

Wang, Jing 16 December 2013 (has links)
Ion irradiation has been known to be an effective tool for structure modification with micro/nano-scale precision. Recently, demonstrations have been made for nano-machining, such as the cutting and welding of carbon nanotubes. Understanding the fundamental effects of ion irradiation on carbon nanotubes is critical for advancing this technique as well as for scientific curiosity. Molecular dynamics modeling was performed to study irradiation stability, structural changes, and corresponding thermal properties. In our study, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to perform atomic scale simulation. In order to understand size and geometry effects on carbon damage creation, the threshold energy of displacement was calculated as a function of recoiling angles for both single-walled and multi-walled nanotubes. A strong directional dependence was found to exist in different shells of multi-walled carbon nanotubes. We found that carbon atoms on the innermost tube were more susceptible to be displaced toward the center of axis. The calculation matrix was further extended to nanotubes having different diameters for a full-scale understanding of the creation of defects. Besides studies on defects creation, thermal properties of carbon nanotubes were studied via a simplified model of the carbon nanotube network. Thermal conductivity, were found to be increased nearly one order of magnitude in carbon nanotube networks after irradiation and subsequent annealing. All the modeling results were compared with experimental observations either obtained from this project as a parallel study or from previous works, for the purpose of verification and validation. For experimental works, atomic scale characterization was performed by using transmission electron microscopy and the thermal conductivity measurement was characterized by using laser flash technique. Through a combination of modeling and experimentation, we proved that ion beam techniques can be used to enhance thermal conductivity in carbon nanotube bundles by inter-tube defects mediated phonon transport.
60

Continuous Production of Carbon Nanotubes Using Carbon Arc Reactor : Anode Surface Temperature Study and CFD Modelling.

Yusoff, Hamdan bin Mohamed January 2008 (has links)
The mass production of carbon nanotubes (CNTs) by a cost effective process is still a challenge for further research and application of CNTs. This research focussed on the deposition of CNTs on a continuously-fed carbon substrate via arc discharge at atmospheric pressure. In this work, modifications, control and optimization of the available arc-discharge reactor were conducted. New reactor support and new tape feeding mechanisms were added to the reactor for better temperature assessment, longer operating period and better control of the speed of the tape. The influence of inter-electrode gap, substrate velocity and arc current on the surface temperature were investigated. Multiwalled carbon nanotubes (MWNTs) were produced at lower currents (< 20 A) and at larger inter-electrode gaps. Further investigation shows that inter-electrode gap influenced both the arc characteristic and the anode surface temperature (Ts). Here, Ts was measured by an optical pyrometer. The inter-electrode gap was found to indirectly affect the formation of NTs. Anode surface temperature (Ts) varied with gap, reaching a minimum at an intermediate gap. Higher CNTs yield was found at this lowest Ts. This minimum Ts is consistent with the presence of a cloud of nanoparticles ejected by the heated graphite/carbon surfaces. These graphene fragments are thought to later fold and form nanotube “seeds” and then develop into multiwall nanotubes. This cloud of nanoparticles also may affect the electrical conductivity at the front of the anode. Simulation of the arc behaviour, i.e. temperature distributions and flow properties of the plasma, using a computer package Comsol Multiphysics 3.2, was stable only when the electrical conductivity of a dusty plasma near to the electrodes was included. Our experiments show that carbon nanotubes grew better at a Ts range of ~ 3650 K - 3700 K and at the tape speed of 3 mm/s. The results from our work also strongly suggested that tiny carbon crystallites are the main intermediates for CNT growth in an electric arc. The limiting factor for a solid state growth mechanism, therefore, is high temperature annealing of carbon or graphene fragments. Further work should aim to understand the growth mechanism of CNTs, produce comprehensive analysis on the arc plasma composition and also explore the possibility of producing CNTs at higher rates.

Page generated in 0.0207 seconds