• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 47
  • 33
  • 20
  • 12
  • 10
  • 8
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 430
  • 72
  • 64
  • 63
  • 59
  • 50
  • 44
  • 43
  • 39
  • 39
  • 39
  • 37
  • 36
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Confined electron systems in Si-Ge nanowire heterostructures

Dillen, David Carl 30 September 2011 (has links)
Semiconductor nanowire field-effect transistors (NWFET) have been recognized as a possible alternative to silicon-based CMOS technology as traditional scaling limits are neared. The core-shell nanowire structure, in particular, also allows for the enhancement of carrier mobility through radial band engineering. In this thesis, we have evaluated the possibility of electron confinement in strained Si-Si1-xGex core-shell nanowire heterostructures. Cylindrical strain distribution was calculated analytically for structures of various dimensions and shell compositions. The strain-induced conduction band edge shift of each region was found using k•p theory coupled with a coordinate system shift to account for strain. A positive conduction band offset of up to 200 meV was found for a Si-Si0.2Ge0.8 structure. We have also designed and characterized a modulation doping scheme for p-type, Ge-SiGe core-shell NWFETs. Finite element simulations of hole density versus radial position were done for different combinations of dopant position and concentration. Three modulation doped nanowire samples, each with a different boron doping density in the shell, were grown using a combined vapor-liquid-solid and chemical vapor deposition process. Low temperature current-voltage measurements of bottom- and top-gate samples indicate that hole mobility is limited by the proximity of charged impurities. / text
42

Simple, economical methods for electrical access to nanostructures used for characterizing and welding individual silver nanowires

Vafaei, Arash January 2013 (has links)
Elongated nanostructures have attracted a great deal of interest due to unique optical, electrical and physical properties. In particular, silver nanowires and nanobeams have proven to be top contenders for a variety of applications. Due to their nano-sized dimensions, however, electrical access to individual nanowires is difficult and expensive. Here, a simple and economical procedure was designed to electrically contact small elongated structures using common facilities available at most universities. A common lithographic procedure is used to pattern gold pads and electrodes on top of nanowires already dispersed on a substrate. This process is tested by first characterizing, using a 4-point-probe measurement, a novel nanobeam created by fusing silver nanodisks. The resistivity of the nanobeams was found to be as low as 2.7x10^−8 Ω·m, which is only slightly above that of bulk silver. These measurements corroborate modeling done by another group that the nanodisks align to create a nearly continuous crystal rather than disjointed grains. In the second application, Joule-heating was used to actualize a reliable weld between silver nanowires synthesized using the polyol method. The nanowires were situated in series between two metal pads, and a procedure was designed to use electrical current to break down intermediate layers without destroying the nanowires themselves. In the last enterprise, individual silver nanowires were isolated between two gold pads and then using the same electrical recipe used for welding nanowires, the contact resistance was reduced to a negligible portion of its original value. It was found that due to the reduction in contact resistance, the 2-point-probe resistivity of the nanowire was similar to those conducted using 4 probes. The invented procedure can thus allow accurate resistivity measurements of individual metal nanowires to be done with only 2 contacts rather than 4, thereby simplifying contact fabrication and allowing appropriate contacts to be deposited on nanowires as short as 4 μm using standard photolithography.
43

Plasmonic Superconducting Single Photon Detector

Eftekharian, Amin 19 September 2013 (has links)
A theoretical model with experimental verification is presented to enhance the quantum efficiency of a superconducting single-photon detector without increasing the length or thickness of the active element. The basic enhancement framework is based on: (1) Utilizing the plasmonic nature of a superconducting layer to increase the surface absorption of the input optical signal. (2) Enhancing the critical current of the nanowires by reducing the current crowding at the bend areas through optimally rounded-bend implementation. The experimental system quantum efficiency and fluctuation rates per second are assessed and compared to the proposed theoretical model. The model originated from an accurate description of the different liberation mechanisms of the nano-patterned superconducting films (vortex hopping and vortex-antivortex pairing). It is built complimentary to the existing, well-established models by considering the effects of quantum confinement on the singularities' energy states. The proposed model explains the dynamics of singularities for a wide range of temperatures and widths and describe an accurate count rate behavior for the structure. Furthermore, it explains the abnormal behaviors of the measured fluctuation rates occurring in wide nano-patterned superconducting structures below the critical temperature. In accordance to this model, it has been shown that for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions, and cannot be neglected as it has been in previous models. Also it is concluded that to satisfy both optical guiding and photon detection considerations of the design, the width and the thickness of the superconducting wires should be carefully determined in order to maintain the device sensitivity while crossing over from the current crowding to vortex-based detection mechanisms.
44

Nanowire Quantum Dots as Sources of Single and Entangled Photons

Khoshnegar Shahrestani, Milad January 2014 (has links)
Realization of linear quantum computation and establishing secure quantum communication among interacting parties demand for triggered quantum sources delivering genuine single and entangled photons. However, the intrinsic energy level spectrum of nanostructures made by the nature or developed under a random growth process energetically lacks the expected figures of merit to produce such quantized states of photons. Here, I present the semi-empirical modeling and experimental investigation on the spin fine structure of strongly confining quantum dots embedded in III-V nanowires. To this end, the quantum dot is numerically modeled via the Configuration Interaction method at two different levels: 1) single-particle level, where its pure energy level structure is resolved in the presence of strain and spin-orbit interaction. 2) Few-particle level, at which the few-body interactions appear as perturbative energy corrections and orbital correlations. I demonstrate the influence of quantum confinement on the binding energies and spin fine structure of excitons in the absence of hyperfine interaction. Importantly, the high-symmetry character of excitonic orbitals in nanowire quantum dots restore the degeneracy of optically-active ground-state excitons, offering an ideal spectrum for the entangled photon pair generation. To experimentally verify the idea, we design and fabricate defect-free nanowire quantum dots with ultra-clean excitonic spectrum, and construct the time correlation function of emitted photons through performing a series of low-temperature statistical quantum optics measurements. We observe a decent performance in terms of single photon generation under low excitation powers. Moreover, photon pairs emitted from the biexciton-exciton cascade of nanowire quantum dots exhibit color indistinguishability and polarization entanglement owing to the trivial fine structure splitting of the ground-state excitons. We further extend the idea by proposing the hybridized states of a nanowire-based quantum dot molecule as the potential source of higher-order entangled states. Tracing the field-dependent spectrum suggests the appearance of dominant features under the weak localization of electrons and coherent tunneling of holes. In addition to their Coulomb correlation, excitons also remain spatially correlated, opening new transition channels normally forbidden in the ground state of a single dot. The proposed structure can be exploited to create tripartite hybrid, GHZ and W-entangled states.
45

Controlling semiconductor nanowire crystal structures via surface chemistry

Shin, Nae Chul 12 January 2015 (has links)
This thesis introduces a new route to control the structure of semiconductor nanowires using surface chemistry. Specifically, in Au-catalyzed Si nanowire growth using hydride species (Si₂H₆) as growth precursors, we demonstrate that the surface hydrogen existing on the nanowires sidewalls affects the growth morphology. First, we show the spectroscopic evidence of atomic hydrogen bonded to sidewall surface of Si nanowires in real-time in situ during growth and correlate their relative change with different growth orientations and planar defect generation. By introducing additional atomic hydrogen during the <111>-oriented nanowire growth with intrinsically low hydrogen concentration, we confirm that the growth orientation changes from <111> to <112> orientation. We also show that the transient change in the nanowire growth conditions (i.e., substrate temperature and precursor pressure) can rationally induce the planar defects such as twin boundary or stacking fault in Si nanowires at user-defined position. These findings provide important insight into the vapor-liquid-solid technique for nanowire growth and identify new possibilities for systematically controlling their structures in general.
46

Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device Integration

Hosseinzadeh khaligh, Hadi January 2013 (has links)
Silver nanowire transparent electrodes have recently received much attention as a replacement for indium tin oxide (ITO) for use in various electronic devices such as touch panels, organic solar cells, and displays. The fabrication of silver nanowire electrodes on glass substrates with a sheet resistance as low as 9 Ω/□ and 90% optical transparency at 550 nm is demonstrated. These resistance and transparency values match that of commercially available indium tin oxide and are superior to other alternatives such as carbon nanotube electrodes. The nanowire electrodes are low cost and easy to fabricate. Moreover, by depositing nanowire films on plastic substrates, mechanically flexible electrodes are obtained. The silver nanowire electrodes are integrated into several electronic devices: transparent heaters, organic solar cells, and switchable privacy glass. The concerns about the suitability of silver nanowire electrodes for use in commercial electronic devices are discussed. High surface roughness, one of the major concerns, is addressed by introducing a new method of embedding silver nanowires in a soft polymer. The instability of silver nanowire electrodes under current flow is also demonstrated for the first time. It is shown that silver nanowire electrodes fail under current flow after ass little as 2 days. This failure is caused by Joule heating which causes the nanowires to break up and thus create an electrical discontinuity in the nanowire film. Suggestions for improving the longevity of the electrodes are given.
47

Metal Nanoparticles/Nanowires Selfassembly on Ripple Patterned Substrate - Mechanism, Properties and Applications

Ranjan, Mukesh 23 August 2011 (has links) (PDF)
Plasmonic properties of self-assembled silver nanoparticles/nanowires array on periodically patterned Si (100) substrate are reported with special attention on the mechanism of nanoparticles self-assembly. The advantage of this bottom up approach over other self-assembling and lithographic methods is the flexibility to tune array periodicity down to 20 nm with interparticle gaps as low as 5 nm along the ripple. Ripple pattern have shallow modulation (~2 nm) still particles self-assembly was observed in non-shadow deposition. Therefore adatoms diffusion and kinetics is important on ripple surface for the self-assembly. PVD e-beam evaporation method used for deposition has proven to be superior to sputter deposition due to lower incident flux and lower atom energy. It was found that particles self-assembly largely dependent on angle of incidence, substrate temperature, and deposition direction due to ripple asymmetric tilt. Ostwald ripening observed during annealing on ripples substrate has striking dependency on ripple periodicity and was found to be different compared to Ostwald ripening on flat Si surface. In-situ RBS measurements of deposited silver on flat and rippled substrate confirmed different sticking of atoms on the two surfaces. The difference between maximum and minimum of the calculated local flux show a peak at an incidence angle of 70o with respect to surface normal. This explains the best alignment of particles at this angle of incidence compare to others. Self-assembled nanoparticles are optically anisotropic, i.e. they exhibit a direction dependent shift in LSPR. The reason of the observed anisotropy is a direction dependent plasmonic coupling. Different in plane and out of the plane dielectric coefficients calculated by modelling Jones matrix elements, confirms that nanoparticle/nanowire array are biaxial anisotropic (ex ¹ ey ¹ ez). The nanoparticles are predominantly insulating while nanowires are both metallic and insulating depending on the dimension. Silver nanoparticles/nanowires self-aligned on pre-patterned rippled substrate are presented for the first time as an active SERS substrate. Anisotropic SERS response in such arrays is attributed to different field enhancement along and across the ripples. Strong plasmonic coupling in elongated nanoparticles chain results in significantly higher SERS intensity then spherical nanoparticles/nanowires and non-ordered nanoparticles. Higher SERS intensity across the nanowires array in comparison to along the array (bulk silver) confirms electromagnetic field enhancement (hot-junction) is responsible for SERS phenomenon. Self-assembly of cobalt nanoparticle on ripple pattern substrate is also reported. Due to less adatom mobility and higher sticking cobalt self-assembly is possible only at much higher temperature. A strong uniaxial magnetic anisotropy was observed not observed for non ordered cobalt particles.
48

Growth of GaN Nanowires: A Study Using In Situ Transmission Electron Microscopy

January 2010 (has links)
abstract: Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2010
49

Optical and Crystal Structure Characterizations of Nanowires for Infrared Applications

January 2011 (has links)
abstract: Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
50

Electron transport properties in one-dimensional III-V nanowire transistors

January 2011 (has links)
abstract: Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers. / Dissertation/Thesis / M.S. Electrical Engineering 2011

Page generated in 0.0261 seconds