Spelling suggestions: "subject:"ailver nanowires"" "subject:"oilver nanowires""
1 |
Synthesis of Silver Nanowires by TiO2 NanoparticlesWang, Ching-Wen 23 June 2008 (has links)
¡@Silver nanowires prepared by the the reduction of AgNO3 at low temperature with thermocatalystic biphase (anatase and brookite phases) TiO2 nanoparticles are described. Furthermore, the possible mechanism to grow silver nanowires without the help of the Ag seed and capping reagent is proposed.
¡@Firstly, the amorphous TiO2 nanoparticles prepared by sol-gel method were spin-coated on the silicon wafer to form amorphous TiO2 matrix. Then an aqueous AgNO3 (1 µL 0.7 M) solution was dropped on the amorphous TiO2 matrix. Following the heat treatment at 200 ¢XC for 8 h, the silver nanowires (length~10 µm, line width~100 nm) were grown on the silicon wafer. We found that amorphous phase of TiO2 was changed to the anatase and brookite phases during the thermal reduction of the aqueous solution of AgNO3.
¡@Silver nanowires were characterized as f.c.c. structure by XRD. The TiO2 particles play an important role in providing electrons and holes for redox reaction and nucleation. With the controlling of the heating temperature and the amount of AgNO3, the silver nanowires were selectively grown in one dimension with large energetic surface. A combination of HR-TEM imaging and selected area electron diffraction reveals that the growing direction for the Ag wires is <011>.
|
2 |
Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device IntegrationHosseinzadeh khaligh, Hadi January 2013 (has links)
Silver nanowire transparent electrodes have recently received much attention as a replacement for indium tin oxide (ITO) for use in various electronic devices such as touch panels, organic solar cells, and displays. The fabrication of silver nanowire electrodes on glass substrates with a sheet resistance as low as 9 Ω/□ and 90% optical transparency at 550 nm is demonstrated. These resistance and transparency values match that of commercially available indium tin oxide and are superior to other alternatives such as carbon nanotube electrodes. The nanowire electrodes are low cost and easy to fabricate. Moreover, by depositing nanowire films on plastic substrates, mechanically flexible electrodes are obtained. The silver nanowire electrodes are integrated into several electronic devices: transparent heaters, organic solar cells, and switchable privacy glass.
The concerns about the suitability of silver nanowire electrodes for use in commercial electronic devices are discussed. High surface roughness, one of the major concerns, is addressed by introducing a new method of embedding silver nanowires in a soft polymer. The instability of silver nanowire electrodes under current flow is also demonstrated for the first time. It is shown that silver nanowire electrodes fail under current flow after ass little as 2 days. This failure is caused by Joule heating which causes the nanowires to break up and thus create an electrical discontinuity in the nanowire film. Suggestions for improving the longevity of the electrodes are given.
|
3 |
Silver Nanowire Transparent Electrodes: Fabrication, Characterization, and Device IntegrationHosseinzadeh khaligh, Hadi January 2013 (has links)
Silver nanowire transparent electrodes have recently received much attention as a replacement for indium tin oxide (ITO) for use in various electronic devices such as touch panels, organic solar cells, and displays. The fabrication of silver nanowire electrodes on glass substrates with a sheet resistance as low as 9 Ω/□ and 90% optical transparency at 550 nm is demonstrated. These resistance and transparency values match that of commercially available indium tin oxide and are superior to other alternatives such as carbon nanotube electrodes. The nanowire electrodes are low cost and easy to fabricate. Moreover, by depositing nanowire films on plastic substrates, mechanically flexible electrodes are obtained. The silver nanowire electrodes are integrated into several electronic devices: transparent heaters, organic solar cells, and switchable privacy glass.
The concerns about the suitability of silver nanowire electrodes for use in commercial electronic devices are discussed. High surface roughness, one of the major concerns, is addressed by introducing a new method of embedding silver nanowires in a soft polymer. The instability of silver nanowire electrodes under current flow is also demonstrated for the first time. It is shown that silver nanowire electrodes fail under current flow after ass little as 2 days. This failure is caused by Joule heating which causes the nanowires to break up and thus create an electrical discontinuity in the nanowire film. Suggestions for improving the longevity of the electrodes are given.
|
4 |
Features of Random Metal Nanowire Networks with Application in Transparent Conducting ElectrodesMaloth, Thirupathi 05 1900 (has links)
Among the alternatives to conventional Indium Tin Oxide (ITO) used in making
transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices.
Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked.
In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.
|
5 |
Optimization of optical performance and dust removal efficiency of electrodynamic screen (EDS) films for improving energy-yield of solar collectorsRabi Bernard, Annie Arokiaselvi 19 May 2020 (has links)
In 2018 alone, the global energy demand grew by 2.3% and will rise by 1.3% each year to 2040 [1] making it the fastest growth rate in the last decade predominantly driven by a robust global economy and increased heating and cooling needs. This tremendous need resulted in using fossil fuels to meet nearly 70% of the growth, but also promoted solar and wind generation to have a double-digit growth pace, with solar alone increasing by 31%. Terrestrial solar energy at AM1.5 is generally given at 1kW/m2, which is a vast free source of energy that can be harvested to meet the global demand for electricity [2]. A major obstacle for large scale solar power production is obscuration of sunlight on solar collectors caused by dust deposition or ‘soiling’ as the power plants are located in semi-arid or desert regions. Soiling could result in energy-yield output losses of about a third of the total power output of the installation [3] as water is a scarce commodity, resulting in lesser cleaning cycles of the solar collectors.
Electrodynamic Screen (EDS) films can restore the efficiency of solar power installations without the use of water, manual labor or robots and can be retrofitted onto the sun facing surfaces of solar collectors, including concentrating solar power mirrors (CSP) and photovoltaic (PV) modules. Applying a low frequency pulsed voltage to the electrodes which form the central unit of the EDS films charges the dust on the collector surface and ejects it using a travelling wave. The electrodes are of paramount importance to the EDS film as they are the primary working unit of the device. Copper is the current choice of electrode material but it is susceptible to electromigration and has serious environmental disadvantages with respect to corrosion and instability. Copper electrodes also do not meet the transmission efficiency (TE) requirements as the opaque electrodes absorb and obstruct the incident sunlight through shadowing, hurting the output efficiency of the photovoltaic modules. Hence for the EDS film to be a strong candidate as a cleaning technology, it must have environmentally durable electrodes that meet the TE needs. For this purpose (1) I have developed a screen printable ink with zinc oxide (ZnO) and silver nanowire (AgNW) that is transparent in nature which satisfies the TE requirements of the EDS film which were previously unmet; this ink referred to as AgNW_ZnO Hybrid Ink throughout this document is my original contribution for the optimization of the optical performance of the EDS film technology. (2) I have established the environmental durability, stability and functionality of the electrodes of the EDS film through standardized, vigorous testing which were not performed before. To do so, I have followed the testing standards specified under the Accelerated Weathering (QUV) ASTM G154 tests which are used to validate the environmental viability of materials (3) My study and findings on the top surface component of the EDS film proposes measures of action that will enhance the removal of dust and suggests alternative, more cost efficient replacements for the ultrathin glass layer which serves as the current design’s top layer (4) My experiments and results on the charging mechanism/behavior of dust particles upon EDS film activation contribute to optimizing the design parameters used for both the EDS film and the power supply unit used to power it. These contributions allow for increasing the output power restoration of PV modules and specular reflection restoration of CSP mirrors that have the EDS film on their optical surfaces.
|
6 |
Développement d'électrodes transparentes par méthodes de dépôt à pression atmosphérique et bas coût pour applications photovoltaïques / Development of transparent electrodes by vacuum-free and low cost deposition methods for photovoltaic applicationsNguyen, Viet Huong 08 October 2018 (has links)
Le travail de thèse implique l'étude de matériaux conducteurs transparents sans indium (TCM), composants essentiels de nombreux dispositifs optoélectroniques, utilisant le dépôt spatial de couches atomiques sous pression atmosphérique (AP-SALD). Cette nouvelle technique partage les avantages principaux de l'ALD classique, mais en plus permet le dépôt de couches minces de haute qualité sur de grandes surfaces avec un contrôle précis à l’échelle nanométrique. Ce travail est focalisé sur l'optimisation des propriétés électriques des films d'oxyde de zinc dopé à l'aluminium (ZnO: Al), l'un des oxydes conducteurs les plus étudiés (TCOs). L'influence de plusieurs paramètres expérimentaux sur les propriétés physiques des films a été étudié. Le mécanisme de transport des porteurs de charge au niveau des joints de grains a été identifié comme étant l'émission tunnel plutôt que l’émission thermoïonique dans le ZnO fortement dopé, grâce à un nouveau modèle que nous avons développé en utilisant la méthode de la matrice de transfert à fonction Airy (AFTMM). En résumé, la densité du piège à électrons aux joints de grains pour les échantillons de ZnO:Al (2,2 × 10^20 cm-3) préparés par AP-SALD a été estimée à environ 7,6 ×10^13 cm-2. Notre modèle montre que la diffusion par les joints de grains est le mécanisme de diffusion dominant dans nos films fabriqués par AP-SALD. Nous avons trouvé que le recuit assisté par UV (~ 200 ° C) sous vide était une méthode efficace pour réduire les pièges aux joints de grains, entraînant une amélioration de la mobilité de 1 cm2V-1s-1 à 24 cm2V-1s-1 pour ZnO et à 6 cm2V -1s-1 pour ZnO:Al. Nous avons également utilisé AP-SALD pour fabriquer des TCM performants, stables et flexibles basés sur un réseau de nanofils métalliques. Pour cela, nous avons développé des électrodes composites en revêtant des nanofils argent ou cuivre (AgNWs ou CuNWs) avec ZnO, Al2O3, ou ZnO: Al. Un revêtement très conforme d’une épaisseur de quelques dizaines de nanomètres déposé par la technique AP-SALD améliore considérablement les stabilités thermique et électrique du réseau AgNWs ou CuNWs. Les propriétés optoélectroniques élevées (résistance de surface 10 ohms/carré, transmittance ~ 90%) du composite AgNW / ZnO: Al les rendent très appropriés pour une application en tant que TCM, en particulier pour les dispositifs flexibles.Enfin, en tant que technique de dépôt versatile, AP-SALD est bien compatible avec la technologie des cellules solaires à hétérojonction de silicium (Si-HET) en termes de passivation d'interface. L'intégration de TCM ZnO: Al et AgNWs à la cellule Si-HET a également été explorée. / The thesis work involves the study of Indium-free Transparent Conductive Materials (TCMs), key components of many optoelectronic devices, using Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). This new approach shares the main advantages of conventional ALD but allows open-air, very fast deposition of high-quality nanometer-thick materials over large surfaces. We focused on the optimization of the electrical properties of Aluminum doped Zinc Oxide (ZnO:Al) films, one of the most studied Transparent Conductive Oxides (TCOs). The effect of several experimental parameters on the physical properties of the deposited films has been evaluated. The carrier transport mechanism at grain boundaries was identified to be tunneling rather than thermionic emission in highly doped ZnO, thanks to a new model we have developed using the Airy Function Transfer Matrix Method. Accordingly, the electron trap density at grain boundaries for ZnO:Al samples (2.2×1020 cm-3) prepared by AP-SALD was estimated to be about 7.6×1013 cm-2. Our model shows that grain boundary scattering is the dominant scattering mechanism in our films. We found that UV assisted annealing (~ 200 °C) under vacuum was an efficient method to reduce grain boundary traps, resulting in an improvement of mobility from 1 cm2V-1s-1 to 24 cm2V-1s-1 for ZnO and to 6 cm2V-1s-1 for ZnO:Al. We have also used AP-SALD to fabricate high-performance, stable and flexible TCMs based on metallic nanowire network. For that, we developed composite electrodes by coating silver/copper nanowires (AgNWs/CuNWs) with ZnO, Al2O3, or ZnO:Al. A thin conformal coating deposited by AP-SALD technique enhanced drastically the thermal/electrical stability of the AgNWs/CuNWs network. High optoelectronic properties (resistivity ~ 10-4 Ωcm, transmittance ~ 90 %) of the AgNW/ZnO:Al composite make them very appropriate for application as TCM, especially for flexible devices.Finally, as a soft deposition technique, AP-SALD is completely compatible to the Silicon heterojunction (Si-HET) solar cell technology in terms of interface passivation. The integration of ZnO:Al and AgNWs based TCMs to Si-HET cell has also been explored.
|
7 |
Flexible transparent electrodes for optoelectronic devicesKinner, Lukas 01 March 2021 (has links)
Transparente Elektroden (TE) sind unverzichtbar in modernen optoelektronischen Bauelementen. Die derzeitig am häufigsten verwendete TE ist Indium Zinn Oxid (ITO). Aufgrund der Nachteile von ITO setzt sich die vorliegende Arbeit mit ITO-Alternativen auseinander. Zwei Ansätze werden in dieser Arbeit untersucht. Der erste Ansatz beruht auf Dielektrikum/Metall/Dielektrikum (DMD) Filmen, im zweites Ansatz werden Silber Nanodrähten (NW) als TE untersucht. Im ersten Ansatz wurden DMD Elektroden auf Glas und Polyethylenterephthalat (PET) fabriziert. Eine Kombination von gesputterten TiOx/Ag/AZO Schichten lieferte die höchste jemals gemessene Transmission und Leitfähigkeit für eine Elektrode auf Glas und PET. Eine durchschnittliche Transmission größer als 85 % (inklusive Substrat) im Bereich von 400-700 nm und einen Schichtwiderstand von unter 6 Ω/sq wurden erreicht. Um die Leistung der TiOx/Ag/AZO Elektrode in einem Bauteil zu überprüfen, wurde sie in einer organischen Licht emittierenden Diode (OLED) implementiert. Die DMD-basierten OLEDs erreichten eine 30 % höhere Strom Effizienz auf Glas und eine 260 % höhere Strom Effizienz auf PET im Unterschied zu den ITO-basierten Bauteilen. Im zweiten Ansatz zur Realisierung flexibler transparenter Elektroden wurden NWs diskutiert. Die Implementierung von Nanodrähten in lösungsprozessierten organischen Licht emittierenden Dioden weißt noch immer zwei große Hürden auf: hohe Rauigkeit der Nanodrahtfilme und Wärmeempfindlichkeit von PET. Um die Rauigkeit zu verkleinern und gleichzeitig die Stabilität zu erhöhen werden zunächst die Nanodrähte in ein UV-härtendes Polymer eingebettet. Es wird eine Transmission von bis zu 80 % (inklusive Substrat) und ein Schichtwiderstand von 13 Ω/sq erreicht. Gleich wie bei den DMD Elektroden wurden auch NW Elektroden in eine OLED implementiert. Die Bauteile zeigten eine größere Flexibilität, Leitfähigkeit und Luminanz als die PET/ITO Referenzen während die selbe Leistungseffizienz erreicht wurde. / Transparent electrodes (TEs) are a key element in optoelectronics. TEs assure simultaneous light interaction with the active device layers and efficient charge carrier injection or extraction. The most widely used TE in today’s industry is indium tin oxide (ITO).
However, there are downsides to the use of ITO. The scope of this thesis is to discuss alternatives to ITO. Two main approaches are examined in this thesis - one approach is based on using dielectric/metal/dielectric (DMD) films and the other is based on using silver nanowire (NW) films.
For the first approach, a combination of sputtered TiOx/Ag/AZO was found to yield the highest transmittance and conductivity ever reported for an electrode on PET with an average transmittance larger than 85 % (including the substrate) in the range 400-700 nm and sheet resistance below 6 Ω/sq.
To test the device performance of TiOx/Ag/AZO, DMD electrodes were implemented in organic light emitting diodes (OLEDs). DMD-based devices achieve up to 260 % higher efficacy on PET, as compared to the ITO-based reference devices.
As a second approach, NWs were investigated. The implementation of silver nanowires as TEs in solution processed organic light emitting diodes still faces two major challenges: high roughness of nanowire films and heat sensitivity of PET. Therefore, within this thesis, an embedding process with different variations is elaborated to obtain highly conductive and transparent electrodes of NWs on flexible PET substrates.
The NWs are embedded into a UV-curable polymer, to reduce the electrode roughness and to enhance its stability. A a transmittance of 80 % (including the substrate) and sheet resistance of 13 Ω/sq is achieved.
|
Page generated in 0.0486 seconds