• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de la technique dépôt par couche atomique spatiale (SALD) pour la fabrication de couches minces type P d'oxyde de cuivre (I) conductrices / Development of the Spatial Atomic Layer Deposition (SALD) technique for the fabrication of p-type thin films of highly conductive copper (I) oxide

Masse de la Huerta, César, Arturo 26 November 2019 (has links)
Pour concevoir avec succès l'instrumentation nécessaire aux nouvelles technologies de fabrication avec une précision nanométrique, la méthodologie de conception doit prendre en compte de nombreux sujets différents liés à la chimie, à la physique, à la mécanique, à l'électronique et à l'automatisation, travaillant ensemble pour atteindre l'objectif souhaité. Dans cette thèse, cette méthodologie de conception a été mise en œuvre avec un grand nombre d’outils et d’approches permettant d’optimiser avec succès une méthode de nanofabrication appelée dépôt par couche atomique spatiale (SALD) afin de déposer des couches minces d’un matériau potentiellement utile en tant que composant du dispositifs à énergie solaire non-silicium, séparateurs d’eau photoélectrochimiques et composants électroniques transparents à couche mince, entre autres: oxyde cuivreux (Cu2O).En ce qui concerne la technologie de fabrication et la conception mécatronique, SALD est une technique de fabrication prometteuse qui permet la fabrication de films minces avec une précision nanométrique et avec la capacité de contrôler leurs propriétés mécaniques, électriques et cristallographiques. De plus, l'approche SALD utilisée dans cette thèse et dans le Laboratoire des matériaux et du génie physique (LMGP) fonctionne à l'air libre (sans chambre de dépôt) et constitue donc potentiellement une approche compatible avec l'industrie pour les films minces homogènes de grande surface fabrication avec un débit élevé. De plus, SALD peut être utilisé dans des conditions qui le rendent compatible avec les substrats flexibles et avec les approches de rouleau à rouleau (R2R). Enfin, SALD offre une flexibilité sur le processus de dépôt afin qu’il puisse être ajusté pour obtenir différentes propriétés sur les films fabriqués avec un minimum de modification de l’instrumentation.À l'aide de simulations CFD (Computational Fluid Dynamics), les phénomènes de la mécanique des fluides qui se produisent pendant le processus de dépôt dans le système SALD ont été analysés pour différentes configurations du réacteur. L'influence sur les propriétés du film a été étudiée et une validation avec des dépôts expérimentaux a été effectuée. Ensuite, en utilisant les connaissances et les directives obtenues avec les simulations CFD, et afin de réduire le coût et la complexité de la modification de certains composants mécaniques du système, un flux de travail comprenant la conception assistée par ordinateur (CAO) et la fabrication additive (également appelé impression 3D) impression) a été mis en place au LMGP pour la fabrication de l’un des composants principaux du système SALD à LMGP: la tête de dépôt. Ici, c'est la première fois qu'une telle technique de fabrication innovante est appliquée aux processus de nanofabrication en couches minces, offrant de nombreuses applications potentielles dans le domaine. Dans cette thèse, un tel flux de travail est présenté et expliqué, ainsi que les directives apprises et les limitations découvertes également présentées.Enfin, couches minces de Cu2O ont été déposé avec succès avec la méthode SALD. Le Cu2O est l’un des rares matériaux aux propriétés électroniques prometteuses en tant que semi-conducteur transparent de type p. Ici, les films de Cu2O fabriqués utilisant le système SALD à LMGP sont rapportés et leur conductivité de type p et leur cristallographie sont analysées.Les résultats de ces travaux fournissent des directives initiales pour la conception industrielle d’un système de fabrication à haut débit basé sur la technologie SALD, dans lequel la conception de ses composants est optimisée pour chaque matériau souhaité. Cette approche de conception rend également ce travail utile pour augmenter la quantité de matériaux compatibles avec le SALD, ainsi que pour développer davantage la méthodologie SALD dans des processus de fabrication innovants de matériaux et de dispositifs. / To successfully design the instrumentation needed for new manufacturing technologies with nanoscale precision, the design methodology must take into account many different topics related to chemistry, physics, mechanics, electronics and automation, working together to achieve the desired goal. In this thesis, this design methodology has been implemented with a large number of tools and approaches to successfully optimize a nanofabrication method called spatial atomic layer deposition (SALD) in order to deposit thin films. a potentially useful material as a component of non-silicon solar energy devices, photoelectrochemical water separators and transparent thin-film electronic components, among others: cuprous oxide (Cu2O).With respect to manufacturing technology and mechatronics design, SALD is a promising manufacturing technique that enables the fabrication of thin films with nanoscale precision and the ability to control their mechanical, electrical and crystallographic properties. In addition, the SALD approach used in this thesis and in the Laboratoire des Matèriaux et du Génie Physique(LMGP) works in the open air (without a repository) and is therefore potentially an industry-compatible approach to film Thin homogeneous high-area manufacturing with high throughput. In addition, SALD can be used under conditions that make it compatible with flexible substrates and roll-to-roll approaches (R2R). Finally, SALD offers flexibility on the deposit process so that it can be adjusted to obtain different properties on films manufactured with a minimum of instrumentation modification.Using CFD (Computational Fluid Dynamics) simulations, the fluid mechanics phenomena that occur during the deposition process in the SALD system were analyzed for different reactor configurations. The influence on the properties of the film was studied and a validation with experimental deposits was carried out. Then, using the knowledge and guidance obtained with CFD simulations, and to reduce the cost and complexity of modifying certain mechanical components of the system, a workflow that includes computer-aided design (CAD) and manufacturing additive (also called 3D printing) printing) was set up at the LMGP for the manufacture of one of the main components of the LMGP SALD system: the deposit head. Here, it is the first time that such an innovative manufacturing technique has been applied to thin-film nanofabrication processes, offering many potential applications in the field. In this thesis, such a workflow is presented and explained, along with learned guidelines and discovered limitations also presented.Finally, thin layers of Cu2O have been successfully deposited with the SALD method. Cu2O is one of the few materials with promising electronic properties as a p-type transparent semiconductor. Here, Cu2O films made using the LMGP SALD system are reported and their p-type conductivity and crystallography are analyzed.The results of this work provide initial guidance for the industrial design of a high throughput manufacturing system based on SALD technology optimized for each desired material. This design approach also makes this work useful for increasing the amount of SALD compatible materials, as well as for further developing the SALD methodology in innovative materials and device manufacturing processes.
2

Développement d'électrodes transparentes par méthodes de dépôt à pression atmosphérique et bas coût pour applications photovoltaïques / Development of transparent electrodes by vacuum-free and low cost deposition methods for photovoltaic applications

Nguyen, Viet Huong 08 October 2018 (has links)
Le travail de thèse implique l'étude de matériaux conducteurs transparents sans indium (TCM), composants essentiels de nombreux dispositifs optoélectroniques, utilisant le dépôt spatial de couches atomiques sous pression atmosphérique (AP-SALD). Cette nouvelle technique partage les avantages principaux de l'ALD classique, mais en plus permet le dépôt de couches minces de haute qualité sur de grandes surfaces avec un contrôle précis à l’échelle nanométrique. Ce travail est focalisé sur l'optimisation des propriétés électriques des films d'oxyde de zinc dopé à l'aluminium (ZnO: Al), l'un des oxydes conducteurs les plus étudiés (TCOs). L'influence de plusieurs paramètres expérimentaux sur les propriétés physiques des films a été étudié. Le mécanisme de transport des porteurs de charge au niveau des joints de grains a été identifié comme étant l'émission tunnel plutôt que l’émission thermoïonique dans le ZnO fortement dopé, grâce à un nouveau modèle que nous avons développé en utilisant la méthode de la matrice de transfert à fonction Airy (AFTMM). En résumé, la densité du piège à électrons aux joints de grains pour les échantillons de ZnO:Al (2,2 × 10^20 cm-3) préparés par AP-SALD a été estimée à environ 7,6 ×10^13 cm-2. Notre modèle montre que la diffusion par les joints de grains est le mécanisme de diffusion dominant dans nos films fabriqués par AP-SALD. Nous avons trouvé que le recuit assisté par UV (~ 200 ° C) sous vide était une méthode efficace pour réduire les pièges aux joints de grains, entraînant une amélioration de la mobilité de 1 cm2V-1s-1 à 24 cm2V-1s-1 pour ZnO et à 6 cm2V -1s-1 pour ZnO:Al. Nous avons également utilisé AP-SALD pour fabriquer des TCM performants, stables et flexibles basés sur un réseau de nanofils métalliques. Pour cela, nous avons développé des électrodes composites en revêtant des nanofils argent ou cuivre (AgNWs ou CuNWs) avec ZnO, Al2O3, ou ZnO: Al. Un revêtement très conforme d’une épaisseur de quelques dizaines de nanomètres déposé par la technique AP-SALD améliore considérablement les stabilités thermique et électrique du réseau AgNWs ou CuNWs. Les propriétés optoélectroniques élevées (résistance de surface 10 ohms/carré, transmittance ~ 90%) du composite AgNW / ZnO: Al les rendent très appropriés pour une application en tant que TCM, en particulier pour les dispositifs flexibles.Enfin, en tant que technique de dépôt versatile, AP-SALD est bien compatible avec la technologie des cellules solaires à hétérojonction de silicium (Si-HET) en termes de passivation d'interface. L'intégration de TCM ZnO: Al et AgNWs à la cellule Si-HET a également été explorée. / The thesis work involves the study of Indium-free Transparent Conductive Materials (TCMs), key components of many optoelectronic devices, using Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). This new approach shares the main advantages of conventional ALD but allows open-air, very fast deposition of high-quality nanometer-thick materials over large surfaces. We focused on the optimization of the electrical properties of Aluminum doped Zinc Oxide (ZnO:Al) films, one of the most studied Transparent Conductive Oxides (TCOs). The effect of several experimental parameters on the physical properties of the deposited films has been evaluated. The carrier transport mechanism at grain boundaries was identified to be tunneling rather than thermionic emission in highly doped ZnO, thanks to a new model we have developed using the Airy Function Transfer Matrix Method. Accordingly, the electron trap density at grain boundaries for ZnO:Al samples (2.2×1020 cm-3) prepared by AP-SALD was estimated to be about 7.6×1013 cm-2. Our model shows that grain boundary scattering is the dominant scattering mechanism in our films. We found that UV assisted annealing (~ 200 °C) under vacuum was an efficient method to reduce grain boundary traps, resulting in an improvement of mobility from 1 cm2V-1s-1 to 24 cm2V-1s-1 for ZnO and to 6 cm2V-1s-1 for ZnO:Al. We have also used AP-SALD to fabricate high-performance, stable and flexible TCMs based on metallic nanowire network. For that, we developed composite electrodes by coating silver/copper nanowires (AgNWs/CuNWs) with ZnO, Al2O3, or ZnO:Al. A thin conformal coating deposited by AP-SALD technique enhanced drastically the thermal/electrical stability of the AgNWs/CuNWs network. High optoelectronic properties (resistivity ~ 10-4 Ωcm, transmittance ~ 90 %) of the AgNW/ZnO:Al composite make them very appropriate for application as TCM, especially for flexible devices.Finally, as a soft deposition technique, AP-SALD is completely compatible to the Silicon heterojunction (Si-HET) solar cell technology in terms of interface passivation. The integration of ZnO:Al and AgNWs based TCMs to Si-HET cell has also been explored.

Page generated in 0.0489 seconds