• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Systematic Investigation of Quantum Confinement Effects in Bismuth Nanowire Arrays

Riley, James R. January 2009 (has links)
Thesis advisor: Michael Graf / Bismuth is an interesting element to study because the low effective mass of its charge carriers makes the material sensitive to quantum confinement effects. When bismuth is reduced to the nanoscale two interesting phenomena may occur: it may transition from a semimetal to a semiconductor, or charge carriers in special surface states may begin to dominate the behavior of the material. Arrays of bismuth nanowires of various diameters were studied to investigate these possibilities. The magnetoresistance of the arrays was measured and the period of Shubnikov-de Haas oscillations suggested an increase in the effective mass and density of the material’s charge carriers for small nanowire diameters. These increases suggested that electrons were present in surface states and strongly influenced the material’s behavior when its dimensions were sufficiently reduced. The magnetization of the nanowire arrays was also measured and the lack of de Haas-van Alphen oscillations for certain diameter nanowires suggested that electrons were not present in surface states and that instead the material was transitioning from a semimetal to a semiconductor. Heat capacity measurements were planned to reconcile the two experiments. My detailed calculations demonstrated that heat capacity measurements were feasible to determine the presence, or absence, of surface charge carriers. Because the electronic contribution to the material’s heat capacity is small a calorimeter platform was constructed with ultra-low heat capacity components. / Thesis (BS) — Boston College, 2009. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: College Honors Program. / Discipline: Physics.
2

The Effect Of Stationary UV Excitation On The Optical Behavior Of Electrochemically Self-Assembled Semiconductor Nanowires

Katkar, Rajesh A. 01 January 2006 (has links)
In this work, we investigate the optical response of the semiconductor quantum wire array when excited by stationary UV light. The array is synthesized by selectively electro-depositing the semiconductor material in electrochemically self-assembled porous alumina templates. Our studies are based on the optical behavioral changes in CdS, ZnO, ZnSe and CdSe quantum wires of 50-, 25- and 10-nm diameters. We use a set of generalized Bloch equations to solve the interband polarization function of the semiconductors derived within the Hartree-Fock approximation, and theoretically model the UV excitation effect on the quantum wires. The solutions which consider the effects of screening, Coulomb interaction between the carriers and many body effects on excitons are generated for a quasi-equilibrium regime using a devised accelerated fixed point method. The solution technique is developed in Mathematica to iteratively solve this complex set of equations. The optical constants generated for individual quantum wires are incorporated into a finite-element electromagnetic wave simulator, HFSS, to investigate the full behavior of the array of wires. Theoretically calculated values of the dielectric permittivity of the un-excited quantum wires are shown to decrease progressively as the wire diameter reduces. We perform the experimental analysis using a pump-probe excitation scheme incorporated in a sensitive Michelson interferometer in a homodyne setup. We measure extremely small changes in the phase shift between the interfering IR probe beams and hence measure the refractive index changes caused by the UV pump. While the decreasing filling factor acts to reduce the optical activity in narrower wire arrays, the shifting of the DOS function with additional quantum confinement serves to increase it. These competing effects give rise to the size-dependent non-monotonic optical activity experimentally observed in ZnO, CdS and ZnSe nanowire arrays. The simulation results show a rapid increase in the changes in effective permittivity values of the individual quantum wires as diameter decreases. The substantial changes observed in the refractive index for the whole thin film array at intermediate wire diameter sizes may be suitable for optical phase shifting, intensity modulation and switching applications in integrated optical devices.
3

II-VI Semiconductor Nanowire Array Sensors Based on Piezotronic, Piezo-Phototronic and Piezo-Photo-Magnetotronic Effects

Yan, Shuke 18 May 2018 (has links)
With the rapid progress of nanotechnologies, there are two developing trends for the next generation of sensors: miniaturization and multi-functionality. Device miniaturization requires less power consumption, or even self-powered system. Multi-functional devices are usually based on multi-property coupling effects. Piezoelectric semiconductors have been considered to be potential candidates for self-powered/multi-functional devices due to their piezotronic coupling effect. In this dissertation, ZnO and CdSe nanowire arrays have been synthesized as the piezoelectric semiconductor materials to develop the following self-powered/multi-functional sensors: (1) self-powered gas sensors of ZnO/SnO2, ZnO/In2O3, ZnO/WO3 and CdSe nanowire arrays have been assembled. All these gas sensors are capable of detecting oxidizing gas and reducing gas without any external power supply owing to piezotronic effect which can convert mechanical energies to electrical energy to power the sensors; (2) a self-powered ZnO/ZnSe core/shell nanowire array photodetector has been fabricated. This photodetector is able to detect the entire range of the visible spectrum as well as UV light because of its type II heterostructure. The absolute sensitivity and the percentage change in responsivity of the photodetector were significantly enhanced resulting from the piezo-phototronic effect. The photodetector also exhibited self-powered photodetection behavior; (3) three dimensional nanowire arrays, such as ZnO and ZnO/Co3O4, have been synthesized to investigate piezo-magnetotronic and piezo-photo-magnetotronic effects. Under magnetic field, the magnetic-induced current of ZnO nanowire array decreased as magnetic field increased, and the current difference was magnified by one order of magnitude caused by piezo-magnetotronic effect through applying a stress. In contrast, under UV light illumination, the current response increased with an increment of magnetic field. The current difference was enhanced by at least two orders of magnitude attributed to piezo-photo-magnetotronic effect. Furthermore, ZnO/Co3O4 core/shell structure was employed to further improve the magnetic-induced current difference. This phenomenon projects a potential for multi-functional piezo-magnetotronic and piezo-photo-magnetotronic device development.

Page generated in 0.0584 seconds