• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche isotopique pour tracer la dynamique des éléments dans deux écosystèmes forestiers du plateau lorrain, développés sur des sols polycycliques / Isotopic approach to trace the dynamics of the elements in two forest ecosystems developed on polycyclic soils in the Lorraine plateau

Bedel, Léa 07 July 2015 (has links)
Deux écosystèmes forestiers lorrains (Clermont-en-Argonne CA et Azerailles AZ) développés sur des sols polycycliques ont un fonctionnement complexe du fait de la présence de deux matériaux différents au sein du profil de sol conduisant à une rupture texturale brutale. Ces sols possèdent de plus des stocks de calcium (Ca) et Magnésium (Mg) échangeables faibles dans la couche de limon de surface (pauvreté plus importante à CA qu’à AZ) et très grands dans l’argile profonde (égalité entre le sites). La différence de fertilité de surface entre les sites, peut s’expliquer en partie par une agrégation meilleure à AZ qu’à CA (où les agrégats dominants sont pauvres en matières organiques et argiles). Le sol de CA retient moins bien le Ca et le Mg que celui d’AZ, malgré des apports atmosphériques plus importants et une minéralisation rapide des litières. La richesse des horizons profonds en Ca et Mg échangeables sur les deux sites ne peut s’expliquer par les entrées classiques seules (dépôts atmosphériques et altération des minéraux). L’utilisation du traçage isotopique naturel de Sr, Ca et Mg, a permis sur ces deux sites, la mise en évidence du rôle de la nappe souterraine qui permet la recharge régulière de la CEC des horizons profonds du sol par simple échange d’ion en période hivernale. Les arbres ont mis en place une stratégie de prélèvement dans les horizons profonds pour pallier la pauvreté relative de leur surface. Cependant, les conséquences d’une fertilité limitée en Mg dans les horizons de surface, se traduit par une translocation interne significative de Mg avant la sénescence à CA. / Two forest ecosystems in Lorraine, France (Clermont-en-Argonne CA and Azerailles AZ) developed on polycyclic soils have a complex functioning due to the presence of two different materials within the soil profile, leading to an abrupt disruption in soil texture. Indeed, they have low exchangeable Ca and Mg stocks in the silty soil upper layers (with a greater poverty in CA than in AZ), and very large stocks in deep clayey layers. These differences in upper soil fertility between the studied sites can be partly explained by a weaker aggregation in CA than in AZ (with aggregates poor in organic matter and clays). The CA soil then holds less nutrients than AZ one, despite higher atmospheric inputs and more rapid mineralization of litter. The richness of the deep soil layers in both sites, cannot be explained by the two conventional inputs i.e. atmospheric deposition and mineral weathering, A third un-expected source was identify using Sr, Ca and Mg isotopes, i.e. a mineralized groundwater table, which allows the CEC recharging of the deep clay layers by simple ion exchange when its invades the subsoil during the winter period. Trees have developed an uptake strategy into these Ca and Mg rich clay layer, to overcome the relative poverty of the upper soil layers. However the consequence of the Mg limititation of the soil upper layers in CA is visible through the increase in the internal Mg-translocation before leaf senescence.
2

Impacts agronomiques et environnementaux de l'épandage de vinasse et de cendre de charbon/bagasse sur les terres agricoles de l'Île Maurice

Soobadar, Aneeza 07 July 2009 (has links) (PDF)
Des 85 000 hectares de terres agricoles à l'île Maurice, prés de 85% est occupé par la canne à sucre, le reste étant composé de maraîchage et des cultures fruitières. Pour assurer sa pérennité et sa viabilité économique à long terme, l'industrie cannière s'appuie dans son programme de réforme sur une revalorisation de ses sous produits en développant une industrie d'éthanol à partir de la mélasse et en utilisant plus efficacement la bagasse durant la période de récolte pour produire l'électricité. Cependant ces deux filières génèrent beaucoup de déchets (400 000 T/an de vinasse durant la distillation d'éthanol, et 40 000 T/an de la cendre de charbon/bagasse durant la production d'énergie électrique), qu'il faudrait valoriser et gérer avec le moins d'effet néfaste possible sur l'environnement. Parmi les moyens disponibles pour la gestion de ces déchets, le recyclage agricole semble être le plus attrayant du point de vue agronomique et également sous l'aspect de protection de l'environnement. Dans ce contexte pour valider cette pratique de recyclage agricole à l'Île Maurice, une étude a été entreprise pour connaître les effets de l'épandage de fortes doses de vinasse et des cendres de bagasse/charbon sur les sols, la culture de la canne à sucre et sur la qualité des ressources en eau. L'analyse de la vinasse et de la cendre de charbon et de bagasse échantillonnées à intervalle régulier de trois mois entre 2005 et 2008 a montré que leur composition chimique est très variable. Néanmoins la caractérisation de la vinasse a confirmé qu'avec sa teneur en K (moyenne de 9.37 g/L), elle est utile principalement comme engrais potassique quoiqu'à un taux de 100 m3/ha son apport en termes d'azote (moyenne de 122 kg N/ha) et en matière organique (8-15% de matière sèche) sera aussi appréciable. Des métaux lourds (Cu, Zn, Ni, Mn, Pb) étaient également présents dans la vinasse mais leurs concentrations étaient négligeables et ne dépassaient souvent pas la limite de détection du spectrophotomètre d'absorption atomique utilisé pour la mesure (5 mg/kg pour le Cu, Zn, Ni, Pb, 10 mg/Kg pour le Mn) A l'opposé de la vinasse qui est acide (pH de 4.5 en moyenne), la cendre de bagasse ou de charbon possède un pH alcalin variant entre 7.5 à 11.5, et peut de ce fait, être utilisée comme amendement pour corriger l'acidité dans les sols. Appliquée à un taux de 100 T/ha, la cendre de charbon représenterait une source importante de potassium (moyenne de 139 kg K/ha) et surtout de phosphore (moyenne de 298 kg P/ha) à la canne à sucre. Contenant très peu de métaux lourds (Cu, Zn, Ni, Mn, Pb et Hg) et en général pas de micropolluants organiques, la cendre de charbon ne risque pas d'accentuer la présence de ces polluants organiques ou inorganiques dans le sol, dans la canne à sucre ou dans la nappe phréatique. Les études au laboratoire ont par contre démontré que la cendre de bagasse/charbon était capable de fortement immobiliser par adsorption, les herbicides atrazine et hexazinone avec des valeurs de Km (coefficients de sorption) de 0.13 pour atrazine et 0.32 pour hexazinone, rendant minime le risque de transfert de ces herbicides vers la nappe souterraine. Les analyses de sol ont confirmé que l'apport de la vinasse baissait le pH (de 5.9 à 5.4 en moyenne), mais cette baisse n'était que temporaire et pas assez significative pour affecter la croissance de la canne. Le pH du sol retournait à sa valeur initiale peu de temps après l'épandage de 100 m3/ha de la vinasse. La cendre de charbon avait eu un effet inverse en augmentant le pH du sol quoique cette hausse ne fût également pas significative pour la culture de la canne. Epandues à 100 m3/ha et à 100 T/ha la vinasse et la cendre de charbon, respectivement, avaient tendance à hausser la salinité du sol qui restait toutefois bien en dessous du seuil de 1700 RS/cm acceptable pour la culture de la canne à sucre. Si la vinasse à 100 m3/ha augmentait le carbone organique dans certains sols, tel ne fut cependant pas le cas pour la cendre de charbon à 100 T/ha. La vinasse comme la cendre de charbon avait un effet positif sur le niveau de calcium et de magnésium échangeables dans le sol. Ainsi à 100 T/ha la cendre de charbon augmentait dans le sol de Pamplemousses le Ca échangeable de 3.40 à 6.61 cmol+/kg après 12 mois, tandis que durant cette même période la vinasse à 100 m3/ha, et malgré sa forte teneur en potassium, portait le Ca échangeable de 1.66 à 1.83 cmol+/kg dans le sol de Union Park. Les essais aux champs établis dans quatre localités avec des doses croissantes de vinasse (25, 50 et 100 m3/ha) ont montré que le rendement de la canne à sucre que ce soit sous forme de canne ou de sucre n'était pas affecté de façon négative par ce déchet. Au contraire les résultats obtenus durant les trois années d'étude, qui ont permis de récolter une canne vierge et deux repousses, ont démontré que la vinasse avait donné un meilleur rendement en canne (moyenne de 84.9 T/ha annuellement pour les quatre sites) que le traitement recevant NPK uniquement sous forme d'engrais minéraux (moyenne de 77.3 T/ha annuellement pour les quatre sites). Puisque tous les traitements avaient reçu le même taux d'azote et de phosphate, ce rendement plus élevé de la vinasse était A part une meilleure nutrition potassique, probablement dû à une amélioration de la qualité du sol grâce aux matières organiques apportées par la vinasse. D'autre part, la cendre de charbon à 100 T/ha était définitivement néfaste à la canne à sucre comme indiqué par le rendement en canne plus faible (moyenne de 67.5 T/ha annuellement pour les quatre sites). A 50 T/ha, l'effet de la cendre de charbon sur le rendement dépendait du type de sol, étant plus affecté dans les sols lessivés comme à Belle Rive que dans les sols moins lessivés de la zone sous humide comme à Pamplemousses. En raison de leur faible teneur en métaux lourds, la vinasse aussi bien que la cendre de charbon n'ont pas d'effet sur la concentration des métaux lourds présents dans la canne à sucre. Pour connaître l'effet de l'épandage de 100 m3/ha de vinasse et de 100 T/ha de cendre de bagasse sur la qualité des eaux souterraines, l'eau percolant après chaque grosse pluie à un mètre de profondeur sous des lysimètres établis sur deux sites avec une pluviométrie différente (1500 mm/an à Réduit et plus de 3500 mm/an à Belle Rive) avait été recueillie et analysée durant la période 2005 à 2008. Les résultats ont montré que la vinasse à 100 m3/ha n'accentuait pas les pertes d'azote sous forme de nitrate. Les métaux lourds les plus mobiles en l'occurrence le cuivre, le zinc et le nickel ont également été retrouvés dans les percolâts mais leurs teneurs restaient bien en dessous des seuils recommandés pour l'eau potable préconisé par l'Organisation Mondiale de la Santé , c'est-à-dire, 1mg Cu/L, 5mg Zn/L et 0.02 mg Ni/L. Les résultats de quenching de fluorescence de la matière organique dissoute de la vinasse et de ses fractions (issues de la dialyse) avec le cuivre ont confirmé une bonne complexation entre cette matière organique dissoute et le cuivre. La cendre de bagasse n'avait pas engendré une présence plus prononcée des métaux lourds et des micropolluants organiques dans les eaux drainant à un mètre de profondeur des lysimètres. La seule différence remarquée entre la vinasse et la cendre de bagasse, était une capacité accrue de cette dernière à mobiliser le nitrate dans le sol. Ainsi suite à l'apport de 100 T/ha de cendre de bagasse, la concentration du nitrate dans les percolâts avait durant la période de novembre 2005 à février 2008 dépassé en de nombreuses occasions à Belle Rive et Réduit respectivement, le seuil de 10 mg N-NO3- /L recommandé pour l'eau potable par l'Organisation Mondiale de la Santé. En conclusion, cette étude a donné des résultats forts intéressants et valables qui indiquent que si l'épandage des fortes doses de vinasse peut être accepté, celle de la cendre de charbon est à éviter puisqu'elle n'est pas sans conséquence nuisible pour les sols ou les cultures et même les eaux souterraines. En effet, les fortes doses de cendre de charbon dans les champs de canne à l'île Maurice, conduiraient à une baisse de production et à une pollution plus accentuée de la nappe souterraine par le nitrate
3

Impacts agronomiques et environnementaux de l'épandage de vinasse et de cendre de charbon/bagasse sur les terres agricoles de l'Île Maurice / Agronomic and environmental impacts of application of coal/bagasse ash and vinasse to sugarcane fields in Mauritius

Soobadar, Aneeza 07 July 2009 (has links)
Des 85 000 hectares de terres agricoles à l’île Maurice, prés de 85% est occupé par la canne à sucre, le reste étant composé de maraîchage et des cultures fruitières. Pour assurer sa pérennité et sa viabilité économique à long terme, l’industrie cannière s’appuie dans son programme de réforme sur une revalorisation de ses sous produits en développant une industrie d’éthanol à partir de la mélasse et en utilisant plus efficacement la bagasse durant la période de récolte pour produire l’électricité. Cependant ces deux filières génèrent beaucoup de déchets (400 000 T/an de vinasse durant la distillation d’éthanol, et 40 000 T/an de la cendre de charbon/bagasse durant la production d’énergie électrique), qu’il faudrait valoriser et gérer avec le moins d’effet néfaste possible sur l’environnement. Parmi les moyens disponibles pour la gestion de ces déchets, le recyclage agricole semble être le plus attrayant du point de vue agronomique et également sous l’aspect de protection de l’environnement. Dans ce contexte pour valider cette pratique de recyclage agricole à l’Île Maurice, une étude a été entreprise pour connaître les effets de l’épandage de fortes doses de vinasse et des cendres de bagasse/charbon sur les sols, la culture de la canne à sucre et sur la qualité des ressources en eau. L’analyse de la vinasse et de la cendre de charbon et de bagasse échantillonnées à intervalle régulier de trois mois entre 2005 et 2008 a montré que leur composition chimique est très variable. Néanmoins la caractérisation de la vinasse a confirmé qu’avec sa teneur en K (moyenne de 9.37 g/L), elle est utile principalement comme engrais potassique quoiqu’à un taux de 100 m3/ha son apport en termes d’azote (moyenne de 122 kg N/ha) et en matière organique (8-15% de matière sèche) sera aussi appréciable. Des métaux lourds (Cu, Zn, Ni, Mn, Pb) étaient également présents dans la vinasse mais leurs concentrations étaient négligeables et ne dépassaient souvent pas la limite de détection du spectrophotomètre d’absorption atomique utilisé pour la mesure (5 mg/kg pour le Cu, Zn, Ni, Pb, 10 mg/Kg pour le Mn) A l’opposé de la vinasse qui est acide (pH de 4.5 en moyenne), la cendre de bagasse ou de charbon possède un pH alcalin variant entre 7.5 à 11.5, et peut de ce fait, être utilisée comme amendement pour corriger l’acidité dans les sols. Appliquée à un taux de 100 T/ha, la cendre de charbon représenterait une source importante de potassium (moyenne de 139 kg K/ha) et surtout de phosphore (moyenne de 298 kg P/ha) à la canne à sucre. Contenant très peu de métaux lourds (Cu, Zn, Ni, Mn, Pb et Hg) et en général pas de micropolluants organiques, la cendre de charbon ne risque pas d’accentuer la présence de ces polluants organiques ou inorganiques dans le sol, dans la canne à sucre ou dans la nappe phréatique. Les études au laboratoire ont par contre démontré que la cendre de bagasse/charbon était capable de fortement immobiliser par adsorption, les herbicides atrazine et hexazinone avec des valeurs de Km (coefficients de sorption) de 0.13 pour atrazine et 0.32 pour hexazinone, rendant minime le risque de transfert de ces herbicides vers la nappe souterraine. Les analyses de sol ont confirmé que l’apport de la vinasse baissait le pH (de 5.9 à 5.4 en moyenne), mais cette baisse n’était que temporaire et pas assez significative pour affecter la croissance de la canne. Le pH du sol retournait à sa valeur initiale peu de temps après l’épandage de 100 m3/ha de la vinasse. La cendre de charbon avait eu un effet inverse en augmentant le pH du sol quoique cette hausse ne fût également pas significative pour la culture de la canne. Epandues à 100 m3/ha et à 100 T/ha la vinasse et la cendre de charbon, respectivement, avaient tendance à hausser la salinité du sol qui restait toutefois bien en dessous du seuil de 1700 RS/cm acceptable pour la culture de la canne à sucre. Si la vinasse à 100 m3/ha augmentait le carbone organique dans certains sols, tel ne fut cependant pas le cas pour la cendre de charbon à 100 T/ha. La vinasse comme la cendre de charbon avait un effet positif sur le niveau de calcium et de magnésium échangeables dans le sol. Ainsi à 100 T/ha la cendre de charbon augmentait dans le sol de Pamplemousses le Ca échangeable de 3.40 à 6.61 cmol+/kg après 12 mois, tandis que durant cette même période la vinasse à 100 m3/ha, et malgré sa forte teneur en potassium, portait le Ca échangeable de 1.66 à 1.83 cmol+/kg dans le sol de Union Park. Les essais aux champs établis dans quatre localités avec des doses croissantes de vinasse (25, 50 et 100 m3/ha) ont montré que le rendement de la canne à sucre que ce soit sous forme de canne ou de sucre n’était pas affecté de façon négative par ce déchet. Au contraire les résultats obtenus durant les trois années d’étude, qui ont permis de récolter une canne vierge et deux repousses, ont démontré que la vinasse avait donné un meilleur rendement en canne (moyenne de 84.9 T/ha annuellement pour les quatre sites) que le traitement recevant NPK uniquement sous forme d’engrais minéraux (moyenne de 77.3 T/ha annuellement pour les quatre sites). Puisque tous les traitements avaient reçu le même taux d’azote et de phosphate, ce rendement plus élevé de la vinasse était A part une meilleure nutrition potassique, probablement dû à une amélioration de la qualité du sol grâce aux matières organiques apportées par la vinasse. D’autre part, la cendre de charbon à 100 T/ha était définitivement néfaste à la canne à sucre comme indiqué par le rendement en canne plus faible (moyenne de 67.5 T/ha annuellement pour les quatre sites). A 50 T/ha, l’effet de la cendre de charbon sur le rendement dépendait du type de sol, étant plus affecté dans les sols lessivés comme à Belle Rive que dans les sols moins lessivés de la zone sous humide comme à Pamplemousses. En raison de leur faible teneur en métaux lourds, la vinasse aussi bien que la cendre de charbon n’ont pas d’effet sur la concentration des métaux lourds présents dans la canne à sucre. Pour connaître l’effet de l’épandage de 100 m3/ha de vinasse et de 100 T/ha de cendre de bagasse sur la qualité des eaux souterraines, l’eau percolant après chaque grosse pluie à un mètre de profondeur sous des lysimètres établis sur deux sites avec une pluviométrie différente (1500 mm/an à Réduit et plus de 3500 mm/an à Belle Rive) avait été recueillie et analysée durant la période 2005 à 2008. Les résultats ont montré que la vinasse à 100 m3/ha n’accentuait pas les pertes d’azote sous forme de nitrate. Les métaux lourds les plus mobiles en l’occurrence le cuivre, le zinc et le nickel ont également été retrouvés dans les percolâts mais leurs teneurs restaient bien en dessous des seuils recommandés pour l’eau potable préconisé par l’Organisation Mondiale de la Santé , c'est-à-dire, 1mg Cu/L, 5mg Zn/L et 0.02 mg Ni/L. Les résultats de quenching de fluorescence de la matière organique dissoute de la vinasse et de ses fractions (issues de la dialyse) avec le cuivre ont confirmé une bonne complexation entre cette matière organique dissoute et le cuivre. La cendre de bagasse n’avait pas engendré une présence plus prononcée des métaux lourds et des micropolluants organiques dans les eaux drainant à un mètre de profondeur des lysimètres. La seule différence remarquée entre la vinasse et la cendre de bagasse, était une capacité accrue de cette dernière à mobiliser le nitrate dans le sol. Ainsi suite à l’apport de 100 T/ha de cendre de bagasse, la concentration du nitrate dans les percolâts avait durant la période de novembre 2005 à février 2008 dépassé en de nombreuses occasions à Belle Rive et Réduit respectivement, le seuil de 10 mg N-NO3- /L recommandé pour l’eau potable par l’Organisation Mondiale de la Santé. En conclusion, cette étude a donné des résultats forts intéressants et valables qui indiquent que si l’épandage des fortes doses de vinasse peut être accepté, celle de la cendre de charbon est à éviter puisqu’elle n’est pas sans conséquence nuisible pour les sols ou les cultures et même les eaux souterraines. En effet, les fortes doses de cendre de charbon dans les champs de canne à l’île Maurice, conduiraient à une baisse de production et à une pollution plus accentuée de la nappe souterraine par le nitrate / Of the 85 000 hectares of arable land in Mauritius, sugar cane occupies some 85% of that area, the remainder is made up mostly of vegetables and fruit trees. To ensure its economic viability and long term sustanainability, the sugar cane industry through a reform program is striving to add value to its by-products by producing ethanol from molasses and by optimizing energy production from bagasse during the harvest season. However these two avenues generate considerable wastes (400 000 T/yr of vinasse during ethanol distillation and 40 000 T/yr of coal/bagasse ash during the production of electricity), which have to be judiciously disposed of with a minimum of risk to the environment. Among the disposal means for these wastes, the application of vinasse and coal/bagasse ash to agricultural land is believed to represent the most sensible economic option from both the agronomic and environmental point of view. In this context before recommending elimination of the wastes through disposal on agricultural lands, a study has been conducted to determine the effects of high doses of vinasse and coal/bagasse ash on soil quality, on the sugar cane plant and on groundwater quality. Analyses of vinasse samples collected at regular intervals of three months during 2005 to 2008 showed that its chemical composition was very variable. However these analyses also showed that as vinasse contained on average 9.37 g/L of K, its fertilization value was mostly as a source of potassium. Nevertheless at an application rate of 100 m3/ha vinasse, it can in addition represent a significant source of N (average of 122 kg N/ha) and of organic matter (average of 8-15 % dry matter). Vinasse also contained heavy metals (Cu, Zn, Ni, Mn, Pb) but their concentrations were negligible and were well below the detection limit of the atomic absorption spectrophotometer (5 mg/kg for Cu, Zn, Ni, Pb and 10mg/kg for Mn). As opposed to vinasse which is acidic in nature (an average pH of 4.5), coal or bagasse ash is alkaline with a pH varying between 7.5 and 11.5 and can therefore be used to amend soil acidity. When applied at 100 T/ha coal ash would represent a significant source of potassium (average of 139 kg K/ha) and of phosphorus (average of 298 kg P/ha) to the sugar cane crop. Due to its low contents of heavy metals (Cu, Zn, Ni, Mn, Pb, and Hg) and to the absence of organic micro pollutants, coal ash is unlikely to enhance the levels of these contaminants in the soil, in the sugar cane crop or in the groundwater. Laboratory studies had demonstrated that coal and bagasse ash were able to strongly adsorb the herbicides atrazine and hexazinone with a sorption coefficient (km) of 0.13 for atrazine and 0.32 for hexazinone. They would thereby act to decrease the movement of these herbicides to groundwater. Analyses of the soils at the study sites showed that the application of vinasse lowered soil pH from an average of 5.9 to 5.4, but this decrease was only temporary and was not significant enough to affect sugar cane growth. In fact the soil pH returned to its initial value shortly after the application of the 100 m3/ha vinasse. On the other hand, coal ash raised soil pH but this rise in pH was likewise not significant to crop growth. Vinasse and coal ash applied at the high rates of 100 m3/ha and 100 T/ha respectively raised the electrical conductivity of the soil, but in spite of this increase, the electrical conductivity remained below the threshold value of 1700 RS/cm recommended for sugar cane. Furthermore if an application rate of 100 m3/ha of vinasse did increase the organic carbon content of certain soils, it was not observed with coal ash at 100 T/ha. Both vinasse and coal ash improved the level of exchangeable calcium and magnesium in the soils. Thus, 12 months after its application at 100 T/ha coal ash raised the level of exchangeable calcium from 3.40 to 6.61 cmol+/kg in the soil at Pamplemousses, whereas during that same period with vinasse at 100 m3/ha, the level of exchangeable calcium rose only from 1.66 to 1.83 cmol+/kg at Union Park, despite the high K content of the vinasse. Field trials laid down in four different agroclimatic zones provided evidence that increasing application rates of vinasse (25, 50 and 100 m3/ha) did not affect cane or sugar yield. On the contrary, results obtained during the three year study period which covered a plant cane crop and two ratoons, had shown that vinasse gave a higher cane yield (an average of 84.9 T/ha/yr for the four sites) than NPK fertilizers alone (an average of 77.3 T/ha/yr for the four sites). As all the treatment plots received the same rate of N and P, this increase in cane yield was in all probability due to a better K nutrition as well as to an improvement in soil organic matter status brought about by the vinasse. On the other hand, coal ash at 100 T/ha definitely impaired cane yield (an average of 67.5 T/ha/yr for the four sites). When it was applied at 50 T/ha, the effect of coal ash on yield was dependent on soil type, being more severe in the highly leached soils of the super humid region at Belle Rive, and less damaging in the soils having undergone less leaching in the humid region of Pamplemousses. Additionally because of their low heavy metal concentrations, vinasse as well as coal ash did not increase the heavy metal contents in the sugar cane plant. To determine the effects of spreading 100 m3/ha of vinasse and 100 T/ha of bagasse ash on groundwater quality, lysimeter studies were conducted at two sites differing in rainfall regimes (3500 mm/yr at Belle Rive and 1500 mm/yr at Réduit). Drainage water percolating at one metre depth was collected after each heavy rainfall event. Analyses of the leachates showed that the vinasse at 100 m3/ha did not enhance loss of N in the form of nitrate. If, as expected, the heavy metals (Cu, Ni and Zn) known to be mobile had been detected in drainage water, their concentrations remained well below the drinking water limits proposed by the World Health Organization (1 mg/L for Cu, 5 mg/L for Zn and 0.02 mg/L for Ni). Fluorescence quenching studies of the dissolved organic matter in vinasse and of its dialysis fractions with copper confirmed the formation of complexes of the dissolved organic matter with copper. As expected, bagasse ash did not increase the levels of heavy metals and organic micropollutants in the drainage water. But bagasse ash as opposed to vinasse moved significantly more nitrate into the groundwater. In fact the limit of 10 mg/L N-NO3- recommended by World Health Organization for drinking water, was exceeded on many occasions during the study period of November 2005 to February 2008 at both Belle Rive and Réduit lysimeters. To conclude, this study has provided some pertinent and very valuable data. Whereas the disposal of high rates of vinasse on agricultural land under sugar cane is acceptable, the same cannot be stated for coal ash which must be avoided as it is would represent a hazard to the sugar cane crop and to groundwater. Indeed, high application rates of coal ash to sugar cane fields in Mauritius will eventually lead to a decrease in sugar cane productivity and to an increase in nitrate contamination of groundwater
4

Géochimie des Terres Rares et des éléments traces associés dans les nappes et l'eau des sols hydromorphes. Application au traçage hydrologique.

Riou, Christine 30 April 1999 (has links) (PDF)
Les objectifs de ce travail sont de : (1) mieux comprendre l'hydrochimie des REE dans les eaux douces continentales (2) déterminer le mode de transport des REE dans ces systèmes (dissous/colloïdal) (3) tester les REE comme traceurs des circJlations d'eau dans les bassins versants d'ordre 1 ,en climat océanique tempéré. Le bassin versant de Kervidy (Bretagne) est situé sur un substratum schisteux imperméable. Deux domaines sont identifiés: (i) un domaine de versantbien drainé. La nappe profonde est oxydante et légèrement acide (pH::::5,5) dans sa partie supérieure, alors que plus profondément elle est réductrice. L'eau est pauvre en matière organique sur l'ensemble de la nappe (COD <2 mg/I) . (ii) une zone hydromorphe de fond de vallée composée de sols temporairement saturés en eau. La nappe superficielle y est riche en matière organique (COD = 10 à 30 mg/I) et présente un pH légèrement plus élevé (:::: 6,5) . Ces eaux sont temporairement réductrices (Eh::::250 mV en hiver et au printemps). Cette étude comporte un suivi bimensuel des teneurs en éléments traces et en COD dans les eaux filtrées à 0,2 !-lm et des paramètres chimiques (Eh, pH). La séparation des espèces sous forme colloïdale et des solutés a été réalisée par ultrafiltration tangentielle. Les teneurs en éléments traces ont "été déterminées par ICP-MS. . Cette étude montre que chaque système possède une signature en REE spécifique stable dans le temps. Ces signatures ne sont pas liées à l'encaissant géologique mais à des processus physico-chimiques se produisant à l'interface eau/roche. La forte anomalie négative en Ce dans la partie supérieure de la nappe profonde (Ce/Ce*=0,06 à 0,6) résulte de l'oxydation du Ce3+ en Ce4+ (précipitation sous forme de Ce02 insoluble). L'absence d'anomalie dans la partie inférieure de la nappe profonde est la conséquence des conditions réductrices. L'absence d'anomalie en Ce èt l'enrichissement en LREE par rapport aux HREE de la nappe superficielle de fond de vallée est liée à la complexation des REE par des colloïdes organiques. En outre les variations temporelles des abondances sont controlées par des changements de conditions rédox. Les teneurs en métaux traces et en COD du ruisseau à l'exutoire augmentent avec les débits. Ainsi, les eaux des zones hydromorphes alimentent le ruisseau majoritairement en périodes de crue. Cette étude met en évidence le rôle majeur de deux facteurs sur la distribution des REE et leur transfert vers les réseaux hydrographiques : la présence de colloïdes et le fonctionnement hydrologique du bassin versant. Nos résultats révèlent un lien étroit entre l'hydrologie du système, les conditions d'oxydo-réduction et la nature des particules colloïdales. Ces facteurs sont à considérer pour toute estimation des flux de métaux traces depuis le sytème terrestre jusqu 'au réseau hydrographique.

Page generated in 0.0868 seconds