• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatic metabolic activation in hepatocellular and nasopharyngeal carcinomas in Hong Kong Chinese. / CUHK electronic theses & dissertations collection

January 1997 (has links)
by Ng Chor Yin Maggie. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (p. 358-403). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
2

Domestic incense burning and the risk of nasopharyngeal carcinoma: a case-referent study among Hong Kong Chinese / 病例對照研究 / 謝少華. / 室內燃香與香港華人的鼻咽癌發病風險: 病例對照研究 / CUHK electronic theses & dissertations collection / Domestic incense burning and the risk of nasopharyngeal carcinoma: a case-referent study among Hong Kong Chinese / bing li dui zhao yan jiu / Xie Shaohua. / Shi nei ran xiang yu Xianggang Hua ren de bi yan ai fa bing feng xian: bing li dui zhao yan jiu

January 2013 (has links)
Xie, Shaohua = 室內燃香與香港華人的鼻咽癌發病風險 : / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 124-153). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese; appendixes includes Chinese. / Xie, Shaohua = Shi nei ran xiang yu Xianggang Hua ren de bi yan ai fa bing feng xian :
3

The role of Epstein-Barr virus in nasopharyngeal carcinoma tumorigenesis. / CUHK electronic theses & dissertations collection

January 2007 (has links)
A comprehensive immunohistochemical study was carried out to investigate the phenotypes and prevalence of intraepithelial lymphocytes in NPC samples semi-quantitatively. CD25+/FOXP3+ T-cells were highly prevalent in primary NPCs, suggesting the presence of the immunosuppressive Tregs in tumor microenvironments. The low abundance of CD4+ T-cells, and the positive correlation between FOXP3 and CD8 staining in NPC samples imply that CD8+FOXP3+ Tregs may be present and play role in the suppression of anti-tumor immune response in NPC patients. The involvement of chemokine in the migration of tumor-infiltrating lymphocytes was studied. Chemokine ligand 20 (CCL20) was overexpressed in all EBV-positive NPC cell lines and xenografts compared to EBV-negative NPC, and immortalized normal nasopharynx epithelial cell lines. The presence of CCL20 was also found in primary tumors but not in normal epithelium. Furthermore, the ability of LMP1 to upregulate CCL20 expression in epithelial cells indicates that EBV may induce the production of chemokine involved in lymphocyte migration. / Epstein-Barr virus (EBV) is invariably associated with the development of nasopharyngeal carcinoma (NPC). Although the association of EBV and cancer has been reported for about four decades, it is still not clear how EBV latent infection contributes to the transformation of nasopharyngeal epithelial cells. The aims of this study are to identify EBV-regulated cellular genes and pathways and to determine the potential role of EBV in the modulation of anti-tumor immune responses in NPC. / In summary, EBV plays critical roles in the development of NPC by regulation of multiple cellular genes and pathways such as the Notch signaling cascade, and modulation of anti-tumor immune responses through the induction of chemokine important in migration of immune cells. / Notch signaling pathway functions in diverse cellular processes such as proliferation, apoptosis, adhesion, and epithelial to mesenchymal transition. In the current study, aberrant expression of activated Notch1 receptor (NICD), Notch ligand (Jagged1), negative regulator of Notch ( NUMB) and Notch downstream effector (HEY1) was detected in NPC cell lines and xenografts. Overexpression of NICD, Jagged1 and HEY1 proteins was also commonly found in primary tumors of NPC. / Transfection of Jagged1 to normal nasopharynx epithelial cells resulted in increased cell proliferation. Moreover, EBERs, which is abundantly expressed in EBV-positive NPC tumors, was capable of inducing the expression of Jagged1 in epithelial cells. The current data shows that Notch signaling pathway is aberrantly activated by the deregulated expression of multiple Notch components in NPC. The induction of Jagged1 by EBERs also implies the potential role of EBV in the activation of Notch signaling cascade in NPC. / Using high-density oligonucleotide microarray, expression profiles of EBV-infected NPC cell lines, HK1+EBV and HONE1+EBV, and their uninfected counterparts, HK1 and HONE, were generated. From the microarray results, six EBV-upregulated (JDP2, IL8, ATP6V0E2L, PLAP, PIK3C2B and AKR1B10 ) and three EBV-downregulated genes (BACE2, PADI3 and MMP1) were identified in both HK1 and HONE1 cells upon EBV latent infection. One hundred and thirty-eight and seventy-six genes were also found to be differentially modulated by EBV in HK1 and HONE1 cells, respectively. This study shows that cellular genes involved in wide range of biological processes and cellular functions are differentially regulated by EBV, which suggest that EBV modulates multiple pathways and processes during NPC tumorigenesis. / Hui, Wai Ying. / Adviser: Kw Lo. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 0806. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 166-204). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / School code: 1307.
4

Aberrant activation of notch signaling pathway in nasopharyngeal carcinoma. / 鼻咽癌中異常活化的notch信號通路 / Bi yan ai zhong yi chang huo hua denotch xin hao tong lu

January 2010 (has links)
Man, Cheuk Him. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 219-263). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Figures --- p.xii / List of Tables --- p.xvi / List of Publications --- p.xvii / Chapter Ch.l --- Introduction --- p.1 / Chapter 1.1 --- Aim of study --- p.1 / Chapter 1.2 --- Literature review --- p.3 / Chapter 1.2.1 --- Nasopharyngeal carcinoma (NPC) --- p.3 / Chapter 1.2.1.1 --- Structure and function of nasopharynx --- p.3 / Chapter 1.2.1.2 --- Histopathology of NPC --- p.3 / Chapter 1.2.1.3 --- Epidemiology of NPC --- p.4 / Chapter 1.2.2 --- Etiology of NPC --- p.6 / Chapter 1.2.2.1 --- Genetic factors --- p.6 / Chapter 1.2.2.2 --- Environment factors --- p.13 / Chapter 1.2.2.3 --- Epstein-Barr virus (EBV) infection --- p.14 / Chapter 1.2.3 --- Therapeutic treatment of NPC --- p.24 / Chapter 1.2.3.1 --- Radiotherapy (RT) --- p.24 / Chapter 1.2.3.2 --- Chemotherapy --- p.25 / Chapter 1.2.4 --- Notch signaling pathway --- p.26 / Chapter 1.2.4.1 --- Notch receptors and their ligands --- p.26 / Chapter 1.2.4.2 --- Activation of Notch signaling pathway --- p.29 / Chapter 1.2.4.3 --- Regulators of Notch signaling pathway --- p.32 / Chapter 1.2.4.4 --- Effectors of Notch signaling pathway --- p.32 / Chapter 1.2.5 --- Role of Notch signaling pathway in tumorigenesis --- p.33 / Chapter 1.2.5.1 --- Cell proliferation --- p.34 / Chapter 1.2.5.2 --- Cell survival --- p.35 / Chapter 1.2.5.3 --- Angiogenesis --- p.36 / Chapter 1.2.5.4 --- Cell invasion and metastasis --- p.36 / Chapter 1.2.6 --- Notch and oncogenic virus --- p.37 / Chapter 1.2.7 --- Crosstalk between Notch and other signaling pathways --- p.38 / Chapter 1.2.7.1 --- NFkB signaling pathway --- p.38 / Chapter 1.2.7.2 --- Ras signaling pathway --- p.39 / Chapter 1.2.7.3 --- Wnt signaling pathway --- p.40 / Chapter 1.2.7.4 --- Akt signaling pathway --- p.40 / Chapter 1.2.7.5 --- ErbB2 signaling pathway --- p.41 / Chapter 1.2.8 --- Notch as therapeutic target for cancer --- p.41 / Chapter Ch.2 --- Materials and Methods --- p.45 / Chapter 2.1 --- "Cell lines, xenografts and primary tumors" --- p.45 / Chapter 2.1.1 --- Cell lines --- p.45 / Chapter 2.1.2 --- Xenografts --- p.46 / Chapter 2.1.3 --- Primary tumors --- p.48 / Chapter 2.2 --- Reverse-transcription polymerase chain reaction (RT-PCR) --- p.50 / Chapter 2.2.1 --- Sample preparation for RT-PCR --- p.50 / Chapter 2.2.1.1 --- RNA extraction --- p.50 / Chapter 2.2.1.2 --- Quantitation of total RNA --- p.50 / Chapter 2.2.2 --- Conventional RT-PCR --- p.51 / Chapter 2.2.3 --- Quantitative RT-PCR --- p.51 / Chapter 2.3 --- Western immunoblot --- p.55 / Chapter 2.3.1 --- Protein extraction --- p.55 / Chapter 2.3.2 --- SDS-PAGE and immunoblotting --- p.55 / Chapter 2.4 --- Immunohistochemistry --- p.59 / Chapter 2.5 --- Cloning and plasmid DNA preparation --- p.62 / Chapter 2.5.1 --- Polymerase chain reaction (PCR) and purification of PCR products --- p.62 / Chapter 2.5.2 --- Restriction enzyme double digestion --- p.65 / Chapter 2.5.3 --- Ligation of plasmid and insert sequence --- p.65 / Chapter 2.5.4 --- Bacterial transformation --- p.66 / Chapter 2.5.5 --- Plasmid DNA extraction --- p.66 / Chapter 2.5.6 --- DNA sequencing --- p.67 / Chapter 2.6 --- Transient transfection of NPC cell lines --- p.67 / Chapter 2.7 --- Drug treatment on NPC cell lines --- p.69 / Chapter 2.8 --- Cell proliferation assays --- p.71 / Chapter 2.8.1 --- WST-1 assay --- p.71 / Chapter 2.8.2 --- BrdU assay --- p.71 / Chapter 2.9 --- Flow cytometry analysis --- p.72 / Chapter 2.9.1 --- Sample preparation --- p.72 / Chapter 2.9.2 --- Cell cycle analysis by propidium iodide staining --- p.73 / Chapter 2.9.3 --- Apoptosis analysis by AnnexinV-PI staining --- p.73 / Chapter 2.10 --- Apoptosis analysis by Caspase-3 activity assay --- p.74 / Chapter 2.11 --- RBP-Jk reporter assay --- p.75 / Chapter 2.12 --- NFKB1 reporter assay --- p.77 / Chapter 2.13 --- Dual luciferase reporter assay --- p.77 / Chapter 2.14 --- Expression array --- p.78 / Chapter 2.15 --- Statistical analysis --- p.79 / Chapter Ch.3 --- Characterization of Notch Signaling Molecules in NPC --- p.80 / Chapter 3.1 --- Introduction --- p.80 / Chapter 3.2 --- Results --- p.81 / Chapter 3.2.1 --- "Expression of Notch ligands, receptors, effectors and regulators in NPC cell lines and xenografts" --- p.81 / Chapter 3.2.2 --- "Expression of Notch ligands, receptors, regulators and effectors in NPC primary tumors" --- p.104 / Chapter 3.3 --- Discussion --- p.111 / Chapter 3.3.1 --- Overexpression of Jagl and D114 in NPC --- p.112 / Chapter 3.3.2 --- Overexpression of Notch receptors in NPC --- p.114 / Chapter 3.3.3 --- "Downregulation of Negative regulator, Numb, in NPC" --- p.116 / Chapter 3.3.4 --- Overexpression of Notch effectors in NPC --- p.117 / Chapter 3.4 --- Summary --- p.119 / Chapter Ch.4 --- Mechanisms of Activation of Notch Signaling Pathway in NPC --- p.120 / Chapter 4.1 --- Introduction --- p.120 / Chapter 4.2 --- Results --- p.122 / Chapter 4.2.1 --- EBV mediated Notch activation --- p.122 / Chapter 4.2.1.1 --- No effect of EBERs and EBNA1 on the expression of Notch Components --- p.122 / Chapter 4.2.1.2 --- LMP1 induces expression of Notch components --- p.129 / Chapter 4.2.1.3 --- LMP2A induces expression of Notch components --- p.133 / Chapter 4.2.2 --- Effect of CXCR4 on Notch signaling pathway in C666-1 --- p.137 / Chapter 4.3 --- Discussion --- p.139 / Chapter 4.3.1 --- EBV-mediated induction of Notch components --- p.139 / Chapter 4.3.2 --- Regulation of Notch expression by CXCR4 signaling pathway --- p.142 / Chapter 4.4 --- Summary --- p.145 / Chapter Ch.5 --- Investigation of the Oncogenic Role of Notch3 --- p.146 / Chapter 5.1 --- Introduction --- p.146 / Chapter 5.2 --- Results --- p.148 / Chapter 5.2.1 --- Effect of knockdown Notch 1 by siRNA on the growth of C666-1 --- p.148 / Chapter 5.2.2 --- Effect of knockdown Notch3 by siRNA on the growth of C666-1 --- p.151 / Chapter 5.2.2.1 --- Effect of knockdown Notch3 by siRNA on the RBP-Jk promoter activity of C666-1 --- p.153 / Chapter 5.2.2.2 --- Effect of knockdown Notch3 by siRNA on the proliferation of C666-1 --- p.155 / Chapter 5.2.2.3 --- Effect of knockdown Notch3 by siRNA on cell cycle progression of C666-1 --- p.158 / Chapter 5.2.2.4 --- Effect of knockdown Notch3 by siRNA on resistant to apoptosis in C666-1 --- p.160 / Chapter 5.2.3 --- Investigation of the anti-proliferation effect of therapeutic agents targeting Notch signaling pathway in NPC cells --- p.168 / Chapter 5.2.3.1 --- "Effect of DAPT on the proliferation of HEK293T, C666-1 and HK-1" --- p.168 / Chapter 5.2.3.2 --- Effect of AMD3100 on Notch signaling pathway and proliferation of NPC cells --- p.172 / Chapter 5.2.4 --- Study of downstream targets of Notch3 in NPC cells --- p.178 / Chapter 5.3 --- Discussion --- p.200 / Chapter 5.3.1 --- Oncogenic role of Notch3 in C666-1 --- p.200 / Chapter 5.3.2 --- Potential therapeutic approach in treating NPC via Notch inhibition --- p.206 / Chapter 5.3.2.1 --- "Gamma secretase inhibitor, DAPT" --- p.206 / Chapter 5.3.2.2 --- "CXCR4 antagonist, AMD3100" --- p.207 / Chapter 5.4 --- Summary --- p.209 / Chapter Ch.6 --- General Discussion --- p.210 / Chapter Ch.7 --- Conclusion --- p.217 / Reference --- p.219 / Appendices --- p.263 / Appendix 1 Summary of immunohistochemical staining results on 23 primary NPC samples --- p.264 / Appendix 2 Summary of 581 selected genes from the expression array --- p.265

Page generated in 0.0675 seconds