Spelling suggestions: "subject:"multionational agriculture imagery deprogram"" "subject:"multionational agriculture imagery ramprogram""
1 |
Estimating Pinyon and Juniper Cover Across Utah Using NAIP ImageryRoundy, Darrell B 01 June 2015 (has links) (PDF)
Expansion of Pinus L. (pinyon) and Juniperus L. (juniper) (P-J) trees into sagebrush (Artemisia L.) steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. We used object based image analysis (OBIA) software (Feature AnalystTM for ArcMap 10.1®, ENVI Feature Extraction®, and Trimble eCognition Developer 8.2®) to extract tree canopy cover using NAIP (National Agricultural Imagery Program) imagery. We then compared our extractions with ground measured tree canopy cover (crown diameter and line point) on 309 subplots across 44 sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J canopy cover except where tree cover was > 45%. Estimates of tree canopy cover using OBIA techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for ENVI, 0.91 for Feature Analyst, and 0.92 for eCognition). Tree cover estimates using OBIA techniques had lower correlations with tree cover measurements using the line-point method (r = 0.85 for ENVI, 0.83 for Feature Analyst, and 0.83 for eCognition). Results from this study suggest that OBIA techniques may be used to extract P-J tree canopy cover accurately and inexpensively. All software packages accurately evaluated accurately extracted P-J canopy cover from NAIP imagery when imagery was not blurred and when P-J cover was not mixed with Amelanchier alnifolia (Utah serviceberry) and Quercus gambelii (Gambel's oak), which are shrubs with similar spectral values as P-J.
|
2 |
Siamese Network with Dynamic Contrastive Loss for Semantic Segmentation of Agricultural LandsPendotagaya, Srinivas 07 1900 (has links)
This research delves into the application of semantic segmentation in precision agriculture, specifically targeting the automated identification and classification of various irrigation system types within agricultural landscapes using high-resolution aerial imagery. With irrigated agriculture occupying a substantial portion of US land and constituting a major freshwater user, the study's background highlights the critical need for precise water-use estimates in the face of evolving environmental challenges, the study utilizes advanced computer vision for optimal system identification. The outcomes contribute to effective water management, sustainable resource utilization, and informed decision-making for farmers and policymakers, with broader implications for environmental monitoring and land-use planning.
In this geospatial evaluation research, we tackle the challenge of intraclass variability and a limited dataset. The research problem centers around optimizing the accuracy in geospatial analyses, particularly when confronted with intricate intraclass variations and constraints posed by a limited dataset. Introducing a novel approach termed "dynamic contrastive learning," this research refines the existing contrastive learning framework. Tailored modifications aim to improve the model's accuracy in classifying and segmenting geographic features accurately. Various deep learning models, including EfficientNetV2L, EfficientNetB7, ConvNeXtXLarge, ResNet-50, and ResNet-101, serve as backbones to assess their performance in the geospatial context. The data used for evaluation consists of high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) captured in 2015. It includes four bands (red, green, blue, and near-infrared) with a 1-meter ground sampling distance. The dataset covers diverse landscapes in Lonoke County, USA, and is annotated for various irrigation system types. The dataset encompasses diverse geographic features, including urban, agricultural, and natural landscapes, providing a representative and challenging scenario for model assessment.
The experimental results underscore the efficacy of the modified contrastive learning approach in mitigating intraclass variability and improving performance metrics. The proposed method achieves an average accuracy of 96.7%, a BER of 0.05, and an mIoU of 88.4%, surpassing the capabilities of existing contrastive learning methods. This research contributes a valuable solution to the specific challenges posed by intraclass variability and limited datasets in the realm of geospatial feature classification. Furthermore, the investigation extends to prominent deep learning architectures such as Segformer, Swin Transformer, Convexnext, and Convolution Vision Transformer, shedding light on their impact on geospatial image analysis. ConvNeXtXLarge emerges as a robust backbone, demonstrating remarkable accuracy (96.02%), minimal BER (0.06), and a high MIOU (85.99%).
|
Page generated in 0.1345 seconds