• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Triple-wavelength polarization lidar observations at Barbados during SALTRACE: Characterization of the optical properties of dust after long-range transport and of pure marine aerosol

Haarig, Ernst Moritz 11 October 2018 (has links)
Mineralstaub und Seesalz sind der Masse nach die häufigsten Aerosoltypen und dominieren den natürlichen Aerosolanteil. Die vorliegende Arbeit untersucht, wie deren optische Eigenschaften durch atmosphärische Prozesse verändert werden. Im Rahmen der vorliegenden Arbeit wurde ein Drei-Wellenlängen-Polarisationslidar entwickelt, um ferntransportierten Wüstenstaub zu untersuchen. Die der Arbeit zugrunde liegenden Messungen wurden im Rahmen der SALTRACE-Kampagne (Experiment zum Ferntransport von Aerosolen aus der Sahara und Aerosol-Wolken-Wechselwirkung) auf Barbados (13º N, 59º W) in den Jahren 2013 und 2014 durchgeführt. Die Lidarmessungen in Barbados ergaben, dass der Saharastaub nach einem Transportweg von 5000 km über den Atlantik im Mittel (21 Fälle) ein lineares Partikeldepolarisationsverhältnis von 0.25 ± 0.03 bei 355 nm, 0.28 ± 0.02 bei 532 nm und 0.23 ± 0.02 bei 1064 nm aufweist. Im Vergleich mit vorangegangen Messungen in Marokko und auf den Kapverden wurde kein signifikanter Unterschied der Werte bei 355 und 532 nm festgestellt. Lediglich die Abnahme des Depolarisationsverhälnisses bei 1064 nm zwischen Marokko und Barbados deutet auf einen Verlust der größeren Staubpartikel hin, ein Ergebnis, das von flugzeuggetragenen in-situ-Messungen bekräftigt wurde. Die optischen Eigenschaften von marinen Aerosolpartikeln wurden in Abhängigkeit der relativen Feuchte (RH) gemessen. Zu diesem Ziel wurden die Polarisations- und Wasserdampfmessungen des Lidars mit den Temperaturprofilen der Radiosonde kombiniert. Der Phasenübergang von sphärischen Seesalzpartikeln bei hoher relativer Feuchte zu nichtsphärischen (würfelartigen) Seesalzkristallen bei geringer relativer Feuchte (<50% RH) konnte durch einen starken Anstieg des Partikeldepolarisationsverhältnisses von 0.02 auf 0.12, 0.15 und 0.10 bei 355, 532 und 1064 nm beobachtet werden. Die Bestimmung der Wachstumsfaktoren des Extinktionskoeffizienten bei einem Anstieg der relativen Feuchte von 40% auf 80% ergab 1.94 ± 0.94, 3.70 ± 1.14 und 5.37 ± 1.66 bei 355, 532 und 1064 nm. Die ausschließlich marin geprägten Luftmassen über Barbados Ende Februar 2014 während der SALTRACE-Winterkampagne boten ideale Messbedingungen. Als weiterer Beitrag zur Charakterisierung der optischen Eigenschaften atmosphärischer Aerosole wurde im Rahmen dieser Arbeit zum ersten Mal der Extinktionskoeffizient und das Lidarverhältnis bei 1064 nm gemessen. Die neue Technik basiert auf der Rotations- Ramanstreuung bei 1064 nm und wurde in einer Zirruswolke getestet, da dort der Extinktionskoeffizient im beobachteten Bereich wellenlängenunabhängig ist.:1 Introduction 2 Observations at Barbados 2.1 Meteorological situation at Barbados 2.2 SALTRACE campaign 3 Lidar technique 3.1 BERTHA lidar system 3.2 Mueller-Stokes formalism 3.3 Lidar equation 3.4 Particle backscatter coefficient 3.5 Extinction coefficient 3.6 Linear depolarization ratio 4 Results and Discussion 2 4.1 First publication: Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014 4.2 Second publication: Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE 4.3 Third publication: 1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study 5 Summary and Conclusions / Mineral dust and sea salt are the most abundant aerosol types (by mass) dominating the natural aerosol load. The present thesis investigates how their optical properties change due to atmospheric processes. In the framework of this thesis, a triple-wavelength polarization lidar was developed for studies of desert dust after long-range transport. The measurements included in this thesis were performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) at Barbados (13º N, 59º W) in 2013 and 2014. In the Saharan dust plumes over Barbados after an atmospheric transport of 5000 km across the Atlantic an average (21 cases) particle linear depolarization ratio of 0.25 ± 0.03 at 355 nm, 0.28 ± 0.02 at 532 nm, and 0.23 ± 0.02 at 1064 nm was measured. When comparing these results to values of previous observations in Morocco and Cabo Verde, no significant change in the depolarization ratio at 355 and 532 nm of Saharan dust was detected. A decrease in the depolarization ratio at 1064 nm between Morocco and Barbados points to a loss of the larger dust particles, a result that was corroborated by air-borne in situ observations. The optical properties of marine aerosol particles were measured under changing ambient relative humidity (RH). For this purpose the polarization and vapor measurements of the lidar were combined with the temperature profile of the radiosonde. The phase transition from spherical sea salt particles under humid conditions to non-spherical (cubic-like) sea salt crystals under dry conditions (<50% RH) could be observed. A strong increase in the particle depolarization ratio from values around 0.02 to values of 0.12 at 355 nm, 0.15 at 532 nm and 0.10 at 1064 nm for cubic-like marine particles was found. A particle extinction enhancement factor of 1.94 ± 0.94, 3.70 ± 1.14 and 5.37 ± 1.66 at 355, 532 and 1064 nm was observed under pristine marine conditions for an increase in RH from 40% to 80%. The measurements were performed while pure marine conditions prevailed at Barbados during the SALTRACE winter campaign at the end of February 2014. In the framework of this thesis, as a further contribution to the characterization of the optical properties of atmospheric aerosols, the extinction coefficient and the lidar ratio at 1064 nm were measured for the first time. The new technique is based on rotational Raman scattering at 1064 nm. The new method was tested in a cirrus cloud taking advantage of the wavelength independence (in the 355 – 1064 nm range) of the extinction coefficient.:1 Introduction 2 Observations at Barbados 2.1 Meteorological situation at Barbados 2.2 SALTRACE campaign 3 Lidar technique 3.1 BERTHA lidar system 3.2 Mueller-Stokes formalism 3.3 Lidar equation 3.4 Particle backscatter coefficient 3.5 Extinction coefficient 3.6 Linear depolarization ratio 4 Results and Discussion 2 4.1 First publication: Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014 4.2 Second publication: Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE 4.3 Third publication: 1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study 5 Summary and Conclusions
2

Aerosol Absorption And Source Characteristics Over Different Environments

Sindhu, Kapil Dev 05 1900 (has links)
Extremely fine liquid droplets or solid particles, those remain suspended in the air, are known as aerosols. They are produced by natural sources and anthropogenic activities. Several types of aerosols produced by different processes are present in the atmosphere and every type of aerosol species exhibit different types of physical and chemical properties. Though making up only a small fraction of atmospheric mass aerosols are capable of altering Earth’s climate by scattering and absorbing incoming solar radiation and absorbing outgoing radiation. Adding to the complexity, they can act as cloud condensation nuclei and modify cloud properties. Major objective of this thesis is to study absorption due to aerosols and factors controlling the absorbing efficiency of aerosols over various environments. We have demonstrated a new method to quantify the organic carbon in terms of optical depth. Our studies demonstrate large “anomalous” absorption in the UV wavelength region over several regions. Further investigations revealed that a major part of this additional absorption is contributed by organic carbon aerosols and partly due to dust aerosols. We show that it is possible to discriminate UV absorption by dust and organic carbon by making use of the fact that dust aerosols are much larger in size compared to organic aerosols. Examination of aerosol optical depth values measured at cities south of Saharan desert indicates high short wave absorption due to coarse mode aerosols probably dust. Even at low values of Angstrom wavelength exponent, which indicates the presence of large aerosols (e.g., dust over land), absorption was found reasonably high compared to that of pure dust. On the other hand, over regions in the northern part of the Sahara close to Europe, short wave absorption was found to be lower. The enhanced short wave absorption due to coarse particles is unexpected. It appears that the deposition of anthropogenic aerosols such as black carbon over dust aerosols is likely to be responsible for this enhanced short wave absorption. This is a typical example of how anthropogenic aerosols can modify the properties of natural aerosols. We have carried out source apportionment using backward air parcel trajectories by applying k-means method of clustering and obtained various aerosol terms corresponding to each cluster. We have selected three island sites and one site in the middle of Saharan desert for this study. High aerosol radiative forcing values are observed even over remote island locations. Our study demonstrates the role of aerosols transported from the main land in influencing the aerosol environment even over remote marine regions.

Page generated in 0.0569 seconds