• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation, fluid venting, and slope failure at an active margin gas hydrate province, Hydrate Ridge Cascadia accretionary wedge /

Johnson, Joel E. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2005. / Printout. Includes map in pocket. Includes bibliographical references. Also available on the World Wide Web.
2

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
3

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
4

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
5

Natural Gas Hydrate Exploration in the Gulf of Mexico

Jones, Benjamin Alexander 09 August 2023 (has links)
No description available.
6

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis January 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.

Page generated in 0.0922 seconds