• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 2
  • 2
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 20
  • 18
  • 14
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Towards Informal Computer Human Communication: Detecting Humor in a Restricted Domain

Taylor, Julia Michelle January 2008 (has links)
No description available.
12

Understand me, do you? : An experiment exploring the natural language understanding of two open source chatbots

Olofsson, Linnéa, Patja, Heidi January 2021 (has links)
What do you think of when you hear the word chatbot? A helpful assistant when booking flight tickets? Maybe a frustrating encounter with a company’s customer support, or smart technologies that will eventually take over your job? The field of chatbots is under constant development and bots are more and more taking a place in our everyday life, but how well do they really understand us humans?  The objective of this thesis is to investigate how capable two open source chatbots are in understanding human language when given input containing spelling errors, synonyms or faulty syntax. The study will further investigate if the bots get better at identifying what the user’s intention is when supplied with more training data to base their analysis on.  Two different chatbot frameworks, Botpress and Rasa, were consulted to execute this experiment. The two bots were created with basic configurations and trained using the same data. The chatbots underwent three rounds of training and testing, where they were given additional training and asked control questions to see if they managed to interpret the correct intent. All tests were documented and scores were calculated to create comparable data. The results from these tests showed that both chatbots performed well when it came to simpler spelling errors and syntax variations. Their understanding of more complex spelling errors were lower in the first testing phase but increased with more training data. Synonyms followed a similar pattern, but showed a minor tendency towards becoming overconfident and producing incorrect results with a high confidence in the last phase. The scores pointed to both chatbots getting better at understanding the input when receiving additional training. In conclusion, both chatbots showed signs of understanding language variations when given minimal training, but got significantly better results when provided with more data. The potential to create a bot with a substantial understanding of human language is evident with these results, even for developers who are previously not experienced with creating chatbots, also taking into consideration the vast possibilities to customise your chatbot.
13

Leveraging Word Embeddings to Enrich Linguistics and Natural Language Understanding

Aljanaideh, Ahmad 22 July 2022 (has links)
No description available.
14

Studies on Data-Driven Discourse Relation Recognition toward Natural Language Understanding / 自然言語理解に向けたデータ駆動の談話関係認識に関する研究

Ohmura, Kazumasa 25 March 2024 (has links)
付記する学位プログラム名: デザイン学大学院連携プログラム / 京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25418号 / 情博第856号 / 新制||情||143(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)特定教授 黒橋 禎夫, 教授 河原 達也, 教授 楠見 孝 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
15

Conversations with an intelligent agent: modeling and integrating patterns in communications among humans and agents

Lee, John Ray 01 January 2006 (has links)
There is an overwhelming variation in the ways an intelligent agent can rationalize communication with a conversational partner. This variation presents many incompatibilities that lead to the specialization of conversational capabilities. This has produced a plethora of models and ideas on how an intelligent agent should understand, interact with, and incorporate communication from a human conversational participant. This dissertation approaches this problem with the thesis that there exists a language between that of human natural language and the behavioral reasoning of an intelligent agent, and that this language is capable of not only unifying the various models used in literature, but also provides the foundation for a theoretical framework for an engineering methodology for building such models. A theory of practical communication language is developed, including the introduction of the meaning-action concept, an expressive and powerful representation based on speech-act and dialogue-act theories, but extended with notions of behavioral operators as well as signatures that allow the operators to incorporate structured and well-defined concepts. An engineering methodology is presented for the construction of concepts, operators and rules that create the language and model of a specific domain, including methodology for the verification and validation of that language and model. The resultant practical communication language methodology, based on the combination of rational communication and meaning-action concepts, will introduce several major enhancements to dialogue management. These enhancements include the use of meaning-action concepts as a shared medium and the introduction of a shared concept graph. This methodology will be used along with various dialogue models from human-human, human-agent and agent-agent communication to construct a task-oriented language and model called the task communication language framework. This framework is then implemented within an intelligent agent in a real-time resource management simulation. A sample output listing from actual human interaction with that implementation is used to demonstrate that the resulting framework does indeed incorporate many of the disparate models of communication and their corresponding capabilities including command and control, information seeking, notification and bother, clarification, explanation, discussion, negotiation, mutual planning, interruption, feedback, adjustable autonomy and corrective dialogues.
16

Natural language understanding in controlled virtual environments

Ye, Patrick January 2009 (has links)
Generating computer animation from natural language instructions is a complex task that encompasses several key aspects of artificial intelligence including natural language understanding, computer graphics and knowledge representation. Traditionally, this task has been approached using rule based systems which were highly successful on their respective domains, but were difficult to generalise to other domains. In this thesis, I describe the key theories and principles behind a domain-independent machine learning framework for constructing natural language based animation systems, and show how this framework can be more flexible and more powerful than the prevalent rule based approach. / I begin this thesis with a thorough introduction to the goals of the research. I then review the most relevant literature to put this research into perspective. After the literature review, I provide brief descriptions to the most relevant technologies in both natural language processing and computer graphics. I then report original research in semantic role labelling and verb sense disambiguation, followed by a detailed description and analysis of the machine learning framework for natural language based animation generation. / The key contributions of this thesis are: a novel method for performing semantic role labelling of prepositional phrases, a novel method for performing verb sense disambiguation, and a novel machine learning framework for grounding linguistic information in virtual worlds and converting verb-semantic information to computer graphics commands to create computer animation.
17

Answering Deep Queries Specified in Natural Language with Respect to a Frame Based Knowledge Base and Developing Related Natural Language Understanding Components

January 2015 (has links)
abstract: Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions. In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found. Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base. After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2015
18

memeBot: Automatic Image Meme Generation for Online Social Interaction

January 2020 (has links)
abstract: Internet memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. Internet memes most commonly take the form of an image which is a combination of image, text, and humor, making them a powerful tool to deliver information. Image memes are used in viral marketing and mass advertising to propagate any ideas ranging from simple commercials to those that can cause changes and development in the social structures like countering hate speech. This work proposes to treat automatic image meme generation as a translation process, and further present an end to end neural and probabilistic approach to generate an image-based meme for any given sentence using an encoder-decoder architecture. For a given input sentence, a meme is generated by combining a meme template image and a text caption where the meme template image is selected from a set of popular candidates using a selection module and the meme caption is generated by an encoder-decoder model. An encoder is used to map the selected meme template and the input sentence into a meme embedding space and then a decoder is used to decode the meme caption from the meme embedding space. The generated natural language caption is conditioned on the input sentence and the selected meme template. The model learns the dependencies between the meme captions and the meme template images and generates new memes using the learned dependencies. The quality of the generated captions and the generated memes is evaluated through both automated metrics and human evaluation. An experiment is designed to score how well the generated memes can represent popular tweets from Twitter conversations. Experiments on Twitter data show the efficacy of the model in generating memes capable of representing a sentence in online social interaction. / Dissertation/Thesis / Masters Thesis Computer Science 2020
19

Utterance Abstraction and Response Diversity for Open-Domain Dialogue Systems / オープンドメイン対話システムにおける発話の抽象化と応答の多様性

ZHAO, TIANYU 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22799号 / 情博第729号 / 新制||情||125(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 黒橋 禎夫, 教授 森 信介 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
20

DECEPTIVE REVIEW IDENTIFICATION VIA REVIEWER NETWORK REPRESENTATION LEARNING

Shih-Feng Yang (11502553) 19 December 2021 (has links)
<div><div>With the growth of the popularity of e-commerce and mobile apps during the past decade, people rely on online reviews more than ever before for purchasing products, booking hotels, and choosing all kinds of services. Users share their opinions by posting product reviews on merchant sites or online review websites (e.g., Yelp, Amazon, TripAdvisor). Although online reviews are valuable information for people who are interested in products and services, many reviews are manipulated by spammers to provide untruthful information for business competition. Since deceptive reviews can damage the reputation of brands and mislead customers’ buying behaviors, the identification of fake reviews has become an important topic for online merchants. Among the computational approaches proposed for fake review identification, network-based fake review analysis jointly considers the information from review text, reviewer behaviors, and production information. Researchers have proposed network-based methods (e.g., metapath) on heterogeneous networks, which have shown promising results.</div><div><br></div><div>However, we’ve identified two research gaps in this study: 1) We argue the previous network-based reviewer representations are not sufficient to preserve the relationship of reviewers in networks. To be specific, previous studies only considered first-order proximity, which indicates the observable connection between reviewers, but not second-order proximity, which captures the neighborhood structures where two vertices overlap. Moreover, although previous network-based fake review studies (e.g., metapath) connect reviewers through feature nodes across heterogeneous networks, they ignored the multi-view nature of reviewers. A view is derived from a single type of proximity or relationship between the nodes, which can be characterized by a set of edges. In other words, the reviewers could form different networks with regard to different relationships. 2) The text embeddings of reviews in previous network-based fake review studies were not considered with reviewer embeddings.</div><div><br></div><div>To tackle the first gap, we generated reviewer embeddings via MVE (Qu et al., 2017), a framework for multi-view network representation learning, and conducted spammer classification experiments to examine the effectiveness of the learned embeddings for distinguishing spammers and non-spammers. In addition, we performed unsupervised hierarchical clustering to observe the clusters of the reviewer embeddings. Our results show the clusters generated based on reviewer embeddings capture the difference between spammers and non-spammers better than those generated based on reviewers’ features.</div><div><br></div><div>To fill the second gap, we proposed hybrid embeddings that combine review text embeddings with reviewer embeddings (i.e., the vector that represents a reviewer’s characteristics, such as writing or behavioral patterns). We conducted fake review classification experiments to compare the performance between using hybrid embeddings (i.e., text+reviewer) as features and using text-only embeddings as features. Our results suggest that hybrid embedding is more effective than text-only embedding for fake review identification. Moreover, we compared the prediction performance of the hybrid embeddings with baselines and showed our approach outperformed others on fake review identification experiments.</div><div><br></div><div>The contributions of this study are four-fold: 1) We adopted a multi-view representation learning approach for reviewer embedding learning and analyze the efficacy of the embeddings used for spammer classification and fake review classification. 2) We proposed a hybrid embedding that considers the characteristics of both review text and the reviewer. Our results are promising and suggest hybrid embedding is very effective for fake review identification. 3) We proposed a heuristic network construction approach that builds a user network based on user features. 4) We evaluated how different spammer thresholds impact the performance of fake review classification. Several studies have used the same datasets as we used in this study, but most of them followed the spammer definition mentioned by Jindal and Liu (2008). We argued that the spammer definition should be configurable based on different datasets. Our findings showed that by carefully choosing the spammer thresholds for the target datasets, hybrid embeddings have higher efficacy for fake review classification.</div></div>

Page generated in 0.0798 seconds