• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 25
  • 24
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 77
  • 51
  • 42
  • 34
  • 30
  • 27
  • 23
  • 22
  • 21
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laminar Natural Convection in Air-Filled Rectangular Cavities With and Without Partitions on Walls

Wu, Wenjiang 12 1900 (has links)
<p>The laminar natural convection in air-filled rectangular cavities with and without a partition on the wall was experimentally investigated. Temperature measurements and flow visualizations were performed for cases with heated and cooled vertical walls (corresponding to global Grashof numbers GrH of approximately 1.4 x 10^8 to 1.8 x 10^8) and non-dimensional top wall temperatures θT of 0.52 (insulated) to 2.3. In the rectangular cavities without the partition and with aspect ratios of 0.5, 1.0 and 2.0, the heated top wall caused the natural convection boundary layer flow to separate from either the top wall (for the cases with Or ;S 1.2) or the heated vertical wall (for the cases with θT >~ 1.2) due to the negative buoyancy force. For the cases with θT >~ 1.2, there is an anti-clockwise recirculating flow in the upper left corner region. The extent of the recirculating flow decreased with an increase of the aspect ratio. The temperature gradient in the core region, dθ∞ /d(y/H), increased with an increase of θT. For a given aspect ratio, dθ∞/d(y/H) changed more rapidly with the change in θT for the cases with θT <~ 1.2 compared to the cases with θT >~ 1.2. The increase in dθ∞/ d(y/H) was more significant for the smaller aspect ratio cavity. The temperature profiles predicted from the similarity solutions proposed by Kulkarni et al. [1] and from the non-similarity model developed by Chen and Eichhorn [2] for natural convection on an isothermal vertical wall in a stratified environment were compared to the measurements in the current cases. These models were not able to accurately describe the characteristics of the natural convection flow in the rectangular cavities.</p> <p>An aluminium partition with non-dimensional heights Hp/H of 0.0625 and 0.125 was attached either to the heated vertical wall or top wall at y/H = 0.65, 0.95 and x/H = 0.1, 0.2, 0.4 and 0.6 to study the effect of the partition on the laminar natural convection flow in a square cavity. The blockage and thermal effects of the partition resulted in changes in the temperature and flow fields, but were mainly limited in the vicinity of the partition. The effect of the partition changed with the height and location of the partition. When the partition was attached to the heated top wall, a recirculating flow was formed between the partition and the heated vertical wall. For a given partition height, the structure of this recirculating flow was dependent on the partition location and θT. A thermal boundary layer developed along the rear surface of the partition due to the thermal effect of the partition. The ambient temperature outside the boundary layer and Nu near the corner region were affected by the partition height due to the changes in the recirculating flow and the rear surface of the partition.</p> / Thesis / Doctor of Philosophy (PhD)
12

Natural Convection in a Porous Medium Saturated by Nanofluid

Ghodeswar, Kaustubh January 2010 (has links)
No description available.
13

Modeling of Flow Mode-Transition of Natural Convection in Inclined Cavities

Wang, Hongda 09 1900 (has links)
Steady two-dimensional natural convection in air-filled, regular and irregular inclined enclosures has been investigated numerically. The effect of various configurations of bidirectional temperature gradients on mode transition of thermal convection inside the cavity has been investigated. Numerical treatment of temperature discontinuity at the comer points of the cavity and its effect on the calculated Nusselt number has been discussed. Rayleigh numbers range between 103 and 104, aspect ratio (width/height) =1,2,4, and angle of inclination in the range between 0 and 90°. While the cavity bottom and top walls were kept at constant temperatures at Th (heated) and at Tc (cooled), respectively, thermal conditions of end walls were varied. In addition to the base case of insulated end walls, seven different configurations of thermal conditions of the two side walls have been studied. Results show that numerically predicted heat transfer rates strongly depend on the numerical treatment of temperature discontinuities at cavity comer points. Results also indicate that thermal conditions of cavity end walls have a significant effect on mode-transition of thermal convection flows; and hence, on heat transfer effectiveness inside the cavity, and on the Hysteresis phenomenon occurred as the cavity angle of inclination varied from zero (horizontal position) to 90 ° (vertical position) and back to zero. The effect of curved bottom is carried out by replacing flat bottom of the cavity with a curved one. Only insulated end walls were discussed in curved case. Results indicated that heat transfer rate and mode transition are strongly dependent on the height of curvature of the bottom wall, which offers more flexibility in controlling flow mode-transition, and hence, effectiveness of heat transfer inside the cavity. / Thesis / Master of Applied Science (MASc)
14

Numerical Study Of Combined Transport Processes In An Enclosure

Narasimham, G S V L 08 1900 (has links) (PDF)
No description available.
15

A Numerical Study of Unsteady Natural Convection in a Rectangular Enclosure -- The Effect of Variable Thermodynamic and Transport Properties

Chidurala, Manohar 06 August 2009 (has links)
A two-dimensional mathematical model is adopted to investigate the development of buoyancy driven circulation patterns and temperature contours inside a rectangular enclosure filled with a compressible fluid where one of the vertical walls of the enclosure is kept at a higher temperature than the opposite one. Fluid thermodynamic and transport properties are assumed to be functions of temperature. The governing equations are discretized using second order accurate differencing for spatial and temporal derivatives and then linearized using Newton's linearization method. The resulting set of algebraic equations is solved using the Coupled Modified Strongly Implicit Procedure for the unknowns of the problem. The results of this study show that the variable property model predicts lower values for wall heat fluxes and Nu number than the constant property one for Rayleigh numbers between 104 and 105.
16

Numerical solution for the droplet combustion

Donini, Mariovane Sabino January 2017 (has links)
Submitted by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-09-29T13:05:00Z No. of bitstreams: 1 Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5) / Approved for entry into archive by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2017-09-29T16:25:43Z (GMT) No. of bitstreams: 1 Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5) / Made available in DSpace on 2017-09-29T16:25:43Z (GMT). No. of bitstreams: 1 Mariovane Sabino Donini - 2017.pdf: 4347435 bytes, checksum: b83edb6c2d0b7868757722dc435be9fa (MD5) Previous issue date: 2017 / In the present work, vaporization and combustion of an isolated fuel droplet at diferente ambient temperatures are examined numerically in order to analyze the effect of buoyancy force on the flame. Generally, fuel droplets in combustion devices are so small that the influence of buoyancy force on vaporization and combustion of droplets is negligible. On the other hand, fuel droplets in experimental devices are affected by the buoyancy force due to their diameters being around or more than 1 mm. To reduce the buoyancy effects, expensive experimental studies are performed in microgravity ambient (drop-tower or out of space). In normal-gravity conditions, the buoyancy force is induced by temperature gradient on ambient atmosphere. The buoyancy is positive in regions of hot gases and negative in regions of cold gases compared with the ambient atmosphere gas. Hot gases move upward and cold gases downward. Playing with the positive buoyancy force of hot gases around the flame and with the negative (cold) buoyancy force of cold gases around the droplet via ambient atmosphere temperature, it is possible to modify the flame shape. In the numerical simulations, incompressible Navier–Stokes equations along with mixture fraction and excess enthalpy conservation equations are solved using a finite volume technique with a uniform structured grid. An artificial compressibility method was applied to reach steady state solutions. The numerical predictions have been compared with analytical results for a zero gravity condition, showing good agreement. For normal gravity condition the numerical results showed that when the ambient temperature increases, the velocity gradient and buoyancy source term decreases. Despite that, the flame increased in all directions. The results have also shown that increasing the ambient temperature, decreases the temperature gradient in the flame, which ends up affecting the flame position. / No presente trabalho, a vaporização e a combustão de uma gota de combustível isolada a diferentes temperaturas ambiente são examinadas numericamente para analisar o efeito da força de flutuação na chama. Geralmente, as gotículas de combustível em dispositivos de combustão são tão pequenas que a influência da força de flutuação na vaporização e na combustão de gotículas é insignificante. Por outro lado, as gotículas de combustível em dispositivos experimentais são afetadas pela força de flutuabilidade devido ao seu diâmetro em torno de ou mais de 1 mm. Para reduzir os efeitos de flutuabilidade, estudos experimentais caros são realizados em ambiente de microgravidade (drop-tower ou fora do espaço). Em condições de gravidade normal, a força de flutuação é induzida por gradiente de temperatura na atmosfera ambiente. A flutuabilidade é positiva em regiões de gases quentes e negativas em regiões de gases frios em comparação com o gás atmosférico ambiente. Os gases quentes movem-se para cima e os gases frios para baixo. Jogando com a força de flutuação positiva dos gases quentes ao redor da chama e com a força de flutuação negativa (fria) dos gases frios ao redor da gota através da temperatura da atmosfera ambiente, é possível modificar a forma da chama. Nas simulações numéricas, as equações de Navier-Stokes incompressíveis juntamente com a fração de mistura e as equações de conservação de entalpia em excesso são resolvidas usando uma técnica de volume finito com uma grade estruturada uniforme. Foi aplicado um método de compressibilidade artificial para alcançar soluções de estado estacionário. As previsões numéricas foram comparadas com resultados analíticos para uma condição de gravidade zero, mostrando boa concordância. Para a condição de gravidade normal, os resultados numéricos mostraram que, quando a temperatura ambiente aumenta, o gradiente de velocidade e o termo da fonte de flutuação diminuem. Apesar disso, a chama aumentou em todas as direções. Os resultados também mostraram que aumentar a temperatura ambiente, diminui o gradiente de temperatura na chama, o que acaba afetando a posição da chama.
17

Enhancing electrical and heat transfer performance of high-concentrating photovoltaic receivers

Micheli, Leonardo January 2015 (has links)
In a world that is constantly in need of a continuous, reliable and sustainable energy supply, concentrating photovoltaic technologies have the potential to become a cost effective solution for large scale power generation. In this light, important progresses have been made in terms of cell’s design and efficiency, but the concentrating photovoltaic industry sector still struggles to gain market share and to achieve adequate economic returns. The work presented in this thesis is focused on the development of innovative solutions for high concentrating photovoltaics receivers. The design, the fabrication and the characterization of a large cell assembly for high concentrations are described. The assembly is designed to accommodate 144 multijunction cells and is rated to supply energy up to 2.6kWe at 500 suns. The original outline of the conductive copper layer limits the Joule losses to the 0.7% of the global power output, by reducing the number of interconnections. All the challenges and the issues faced in the manufacturing stage are accounted for and the reliability of the fabrication has been proven by quality tests and experimental investigations conducted on the prototype. An indoor characterization shows the receiver’s potential to supply a short-circuit current of 5.77A and an open circuit voltage per cell of 3.08V at 500×, under standard test conditions, only 4.80% and 2.06% respectively lower than those obtained by a commercial single-cell assembly. An electrical efficiency of 29.4% is expected at 500 suns, under standard conditions. A prototype’s cost of $0.91/Wp, in line with the actual price of CPV systems, has been recorded: a cost breakdown is reported and the way to further reduce the cost have been identified and is accounted. In a second approach, the design of a natural convective micro-finned array to be integrated in a single cell receiver has been successfully attempted. Passive cooling systems are usually cheaper, simpler and considered more reliable than active ones. After a detailed review of micro-cooling solutions, an experimental investigation on the thermal behaviour of micro-fins has been conducted and has been combined with a multiphysics software model. A micro-finned heat sink shows the potential to keep the CPV temperature below 100°C under standard conditions and the ability to handle the heat flux when the cell’s efficiency drops to zero. Moreover, a micro-finned heat sink demonstrates the potential to introduce significant benefits in terms of material usage and weight reduction: compared to those commercially available, a micro-finned heat sink has a power-to-weight ratio between 6 and 8 times higher, which results in lower costs and reduced loads for the CPV tracker.
18

Computational Fluid Dynamic Modeling of Natural Convection in Vertically Heated Rods

Surendran, Mahesh 01 May 2016 (has links)
Natural convection is a phenomenon that occurs in a wide range of applications such as cooling towers, air conditioners, and power plants. Natural convection may be used in decay heat removal systems such as spent fuel casks, where the higher reliability inherent of natural convection is more desirable than forced convection. Passive systems, such as natural convection, may provide better safety, and hence have received much attention recently. Cooling of spent fuel rods is conventionally done using water as the coolant. However, it involves contaminating the water with radiation from the fuel rods. Contamination becomes dangerous and difficult for humans to handle. Further, the recent nuclear tragedy in Fukushima, Japan has taught us the dangers of contamination of water with nuclear radiation. Natural convection can perhaps significantly reduce the risk since it is self-sufficient and does not rely on other secondary system such as a blower as in cases of forced convection. The Utah State University Experimental Fluid Dynamics lab has recently designed an experiment that models natural convection using heated rod bundles enclosed in a rectangular cavity. The data available from this experiment provides and opportunity to study and validate computational fluid dynamics(CFD)models. The validated CFD models can be used to study multiple configurations, boundary conditions, and changes in physics(natural and/or forced convection). The results are to be validated using experimental data such as the velocity field from particle image velocimetry (PIV), pressure drops across various sections of the geometry, and temperature distributions along the vertically heated rods. This research work involves modeling natural convection using two-layer turbulence models such as k - ε and RST (Reynolds stress transport) using both shear driven (Wolfstein) and buoyancy driven (Xu) near-wall formulations. The interpolation scheme employed is second-order upwinding using the general purpose code STAR-CCM+. The pressure velocity coupling is done using the SIMPLE method. It is ascertained that turbulence models with two-layer formulations are well suited for modeling natural convection. Further it is established that k - ε and Reynolds stress turbulence models with the buoyancy driven (Xu)formulation are able to accurately predict the flow rate and temperature distribution.
19

A Parallel Navier Stokes Solver for Natural Convection and Free Surface Flow

Norris, Stuart Edward January 2001 (has links)
A parallel numerical method has been implemented for solving the Navier Stokes equations on Cartesian and non-orthogonal meshes. To ensure the accuracy of the code first, second and third order differencing schemes, with and without flux-limiters, have been implemented and tested. The most computationally expensive task in the code is the solution of linear equations, and a number of linear solvers have been tested to determine the most efficient. Krylov space, incomplete factorisation, and other iterative and direct solvers from the literature have been implemented, and have been compared with a novel black-box multigrid linear solver that has been developed both as a solver and as a preconditioner for the Krylov space methods. To further reduce execution time the code was parallelised, after a series of experiments comparing the suitability of different parallelisation techniques and computer architectures for the Navier Stokes solver. The code has been applied to the solution of two classes of problem. Two natural convection flows were studied, with an initial study of two dimensional Rayleigh Benard convection being followed by a study of a transient three dimensional flow, in both cases the results being compared with experiment. The second class of problems modelled were free surface flows. A two dimensional free surface driven cavity, and a two dimensional flume flow were modelled, the latter being compared with analytic theory. Finally a three dimensional ship flow was modelled, with the flow about a Wigley hull being simulated for a range of Reynolds and Froude numbers.
20

Experimental and Analytical Analysis of Perimeter Radiant Heating Panels

Kegel, Martin January 2006 (has links)
In recent years the U. S. and Canada have seen a steady increase in energy consumption. The U. S. in particular uses 25% more energy than it did 20 years ago. With declining natural resources and an increase in fuel costs, it has become important to find methods of reducing energy consumption, in which energy conservation in space heating and cooling has become a widely researched area. One method that has been identified to reduce the energy required for space heating is the use of radiant panels. Radiant panels are beneficial because the temperature set points in a room can be lowered without sacrificing occupant comfort. They have therefore become very popular in the market. Further research, however, is required to optimize the performance of these panels so energy savings can be realized. <br /><br /> An analytical model has been developed to predict the panel temperature and heat output for perimeter radiant panel systems with a known inlet temperature and flow rate, based on a flat plate solar collector (RSC) model. As radiative and convective heat transfer coefficients were required to run the model, an analytical analysis of the radiative heat transfer was performed, and a numerical model was developed to predict the convective heat transfer coefficient. Using the conventional radiative heat exchange method assuming a three-surface enclosure, the radiative heat transfer could be determined. Numerically, a correlation was developed to predict the natural convective heat transfer. <br /><br /> To validate the analytical model, an experimental analysis was performed on radiant panels. A 4m by 4m by 3m test chamber was constructed in which the surrounding walls and floor were maintained at a constant temperature and the heat output from an installed radiant panel was measured. Two radiant panels were tested; a 0. 61m wide panel with 4 passes and a 0. 61m wide panel with 8 passes. The panels were tested at 5 different inlet water temperatures ranging from 50°C to 100°C. <br /><br /> The RSC model panel temperature and heat output predictions were in good agreement with the experimental results. The RSC model followed the same trends as that in the experimental results, and the panel temperature and panel heat output were within experimental uncertainty, concluding that the RSC model is a viable, simple algorithm which could be used to predict panel performance.

Page generated in 0.0881 seconds