• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 25
  • 24
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 77
  • 51
  • 42
  • 34
  • 30
  • 27
  • 23
  • 22
  • 21
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Convection naturelle nanofluidique en cavité hémisphérique inclinée : approches numérique et expérimentale / Nanofluidic natural convection in hemispherical tilted cavity : numerical and experimental approaches

Haddad, Oriana 15 November 2018 (has links)
Cette thèse, à la fois numérique et expérimentale, porte sur l’étude du transfert de chaleur par convection naturelle qui apparait au sein d’une cavité hémisphérique en régime stationnaire. L’enceinte est remplie d’eau ou de nanofluide de type eau / ZnO. La fraction volumique varie entre 0 (eau pure) et 10%. La coupole de la cavité est maintenue à température froide. Ce travail s’applique au domaine de l’ingénierie électronique et plus particulièrement au refroidissement des composants actifs de différentes formes. Trois géométries de sources de chaleur sont étudiées : la première est plane et circulaire (disque) et les suivantes, centrées sur le disque, de même surface d’échange, sont cubique et hémisphérique. L’angle d’inclinaison du disque varie entre 0 (coupole orientée vers le haut) et 180° (coupole orientée vers le bas) par rapport au plan horizontal. Les sources de chaleur génèrent des puissances qui conduisent à des Rayleigh importants. L’approche numérique est effectuée à l’aide de la méthode des volumes finis basée sur l’algorithme SIMPLE et un modèle monophasique. Pour chaque source active, le transfert de chaleur convectif est analysé et quantifié par l’intermédiaire d’une corrélation du type Nusselt-Rayleigh-Prandtl-angle d’inclinaison. D’un point de vue expérimental, la fabrication des sources de chaleur est minutieusement décrite étape par étape et le calcul du coefficient de transfert convectif moyen expérimental est détaillé. La comparaison mesures-corrélations remet en question l’efficacité du nanofluide en termes de refroidissement. / This numerical and experimental thesis deals with natural convective heat transfer that occurs in a hemispherical cavity in steady state. The enclosure is filled with water or ZnO / water nanofluid. The volume fraction varies between 0% (pure water) and 10%. The coupola of the cavity is kept at a cold temperature. This work corresponds to the field of electronics and the cooling of different actives composants. Three active heating sources are studied: the first one is plane and circular (the disc) and the followings, centered on the disc with the same surface, are cubical and hemispherical. The tilted angle varies between 0 (dome facing upwards) and 180° (dome facing downwards) with respect to the horizontal plane. Heat sources generate important heat fluxes leading to high Rayleigh numbers values. Numerical approach is done by means of the volume control method based on the SIMPLE algorithm and using monophasic model. For each active source, the convective heat transfer is analyzed and quantified by means of a correlation of the Nusselt-Rayleig-Prandtl-tilt angle type. Experimentally, the heat sources are built step by step and the average convective heat transfer coefficient is calculated. The comparison measures-correlations questions on the cooling nanofluid’s efficiency.
52

Thermal Assessment of a Latent-Heat Energy Storage Module During Melting and Freezing for Solar Energy Applications

Ramos Archibold, Antonio Miguel 06 November 2014 (has links)
Capital investment reduction, exergetic efficiency improvement and material compatibility issues have been identified as the primary techno-economic challenges associated, with the near-term development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar power plants. Three TES techniques have gained attention in the solar energy research community as possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and (3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the most-promising methods because of its potential to develop more effective energy exchange, reduce the cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to this approach arise from the encapsulation techniques used to create a durable capsule, as well as an assessment of the fundamental thermal energy transport mechanisms during the phase change. A comprehensive study of the energy exchange interactions and induced fluid flow during melting and solidification of a confined storage medium is reported in this investigation from a theoretical perspective. Emphasis has been placed on the thermal characterization of a single constituent storage module rather than an entire storage system, in order to, precisely capture the energy exchange contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been solved numerically by the finite volume scheme. Initially, the interaction between conduction and natural convection energy transport modes, in the absence of thermal radiation, is investigated for solar power applications at temperatures (300 - 400°). Later, participating thermal radiation within the storage medium has been included in order to extend the conventional natural convection-dominated model and to analyze its influence on the melting and freezing dynamics at elevated temperatures (800 - 850°). A parametric analysis has been performed in order to ascertain the effects of the controlling parameters on the melting/freezing rates and the total and radiative heat transfer rates at the inner surface of the shell. The results show that the presence of thermal radiation enhances the melting and solidification processes. Finally, a simplified model of the packed bed heat exchanger with multiple spherical capsules filled with the storage medium and positioned in a vertical array inside a cylindrical container is analyzed and numerically solved. The influence of the inlet mass flow rate, inner shell surface emissivity and PCM attenuation coefficient on the melting dynamics of the PCM has been analyzed and quantified.
53

Natural Convection Heat Transfer in Two-Fluid Stratified Pools with Internal Heat Sources

Gubaidullin, Askar January 2001 (has links)
No description available.
54

Numerical and experimental study of transient laminar natural convection of high prandtl number fluids in a cubical cavity

Younis Taha Elamin, Obai 23 November 2009 (has links)
NUMERICAL AND EXPERIMENTAL STUDY OF TRANSIENT LAMINAR NATURAL CONVECTION OF HIGH PRANDTL NUMBER FLUIDS IN A CUBICAL CAVITYObai Younis Taha ElaminLa convección natural en espacios cerrados, se encuentra ampliamente en sistemas naturales e industriales. El objetivo general de este trabajo es desarrollar y validar una herramienta de simulación capaz de predecir las tasas de enfriamiento de aceite en un tanque. Esta herramienta ha de tener en cuenta la variación de la viscosidad del aceite para dar información detallada de las tasas de enfriamiento del aceite bajo diferentes condiciones de contorno térmicas realisticas. En primer lugar, la influencia de diferentes condiciones de contorno térmicas en las paredes, la variación de la viscosidad y la conductividad de la pared en la convección natural del flujo laminar transitorio en una cavidad cúbica con seis paredes térmicamente activo están analizadas.Para analizar el efecto individual de las paredes laterales de la cavidad en el proceso de enfriamiento, la segunda parte de este estudio considera que, tanto numéricamente como experimentalmente, la transición de la convección natural laminar en una cavidad cúbica con dos paredes opuestas frías y verticales.Nuevas relaciones de escala que tengan en cuenta la variación de la viscosidad con la temperatura, no publicadas anteriormente en la literatura, se derivan de las velocidades de la capa límite, por el tiempo necesario para la capa límite para alcanzar el estado estacionario y para la velocidad y el espesor de las intrusiones horizontales.NUMERICAL AND EXPERIMENTAL STUDY OF TRANSIENT LAMINAR NATURAL CONVECTION OF HIGH PRANDTL NUMBER FLUIDS IN A CUBICAL CAVITYObai Younis Taha ElaminFree convection in enclosed spaces is found widely in natural and industrial systems. The general objective of this work is to develop and validate a simulation tool able to predict the cooling rates of oil in a tank. This tool has to take into account the variation of the oil viscosity to give detailed information of the cooling rates of the oil under different realistic thermal boundary conditions. First, the influence of different thermal wall boundary conditions, the variation of the viscosity and the wall conductivity on the transient laminar natural convection flow in a cubical cavity with the six walls thermally active is studied numerically. To analyze the individual effect of the side walls of the cavity on the cooling process, the second part of this study considers, numerically and experimentally, the transient laminar natural convection in a cubical cavity with two cold opposite vertical walls. The shadowgraph technique is employed to visualize the development of the transient convective flow. New scaling relations that take into account the viscosity variation with temperature, not reported previously in the literature, are derived for the boundary layer velocities, for the time needed for the boundary layer to reach the steady state and for the velocity and thickness of the horizontal intrusions.
55

Simulation Of Refrigerated Space With Radiation

Bayer, Ozgur 01 February 2009 (has links) (PDF)
Performance of a refrigerator can be characterized with its ability to maintain a preset low temperature by spending the least amount of electricity. It is important to understand natural convection inside a refrigerator for optimizing its design for performance. Computational Fluid Dynamics (CFD) together with experiments is a very powerful tool for visualizing flow and temperature fields that are essential for understanding a phenomenon that involves both fluid and heat flow. In this aspect, simulations are performed for compartment and total refrigerator models using the package program Fluent which is based on finite volume method. An experimental study is performed to determine the constant wall temperature boundary conditions for the numerical models. Effect of radiation is also investigated by comparing the numerical study of a different full refrigerator model with a similar one in literature. While evaluating the radiation effect, convection boundary condition is selected by defining overall heat transfer coefficient between the ambient room air at a constant temperature and the inner surfaces of the walls. Based on assumptions, related heat transfer analyses are done using compartment and total refrigerator model analyses. Performing CFD simulations of a refrigerator cabinet for visualizing the flow and temperature fields which is the aim of the study is achieved and some observations that can be useful in design optimization are made.
56

Numerical Investigation Of Natural Convection From Vertical Plate Finned Heat Sinks

Cakar, Kamil Mert 01 June 2009 (has links) (PDF)
The steady-state natural convection from vertically placed rectangular fins is investigated numerically by means of a commercial CFD program called ICEPAK. The effects of geometric parameters of fin arrays on the performance of heat dissipation from fin arrays are examined. In order to simulate the different fin configurations and compare the results with literature, two experimental studies from literature are selected. Optimum fin spacing for both studies are found numerically and compared with experimental studies. The models are first verified by simulating natural convection on vertically placed flat plate and comparing the results with literature. After verification 30 different fin array configurations for the first experimental case study and 15 different fin array configurations for the second experimental case study from literature are analyzed. It is observed that the present results agree very well with the optimum fin spacing results of the experimental studies. It is also observed that the empirical correlations in the literature are conservative and the numerically obtained correlations predict higher heat transfer rates.
57

The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems

Gumgum, Sevin 01 February 2010 (has links) (PDF)
In this thesis, the two-dimensional, transient, laminar flow of viscous and incompressible fluids is solved by using the dual reciprocity boundary element method (DRBEM). Natural convection and mixed convection flows are also solved with the addition of energy equation. Solutions of natural convection flow of nanofluids and micropolar fluids in enclosures are obtained for highly large values of Rayleigh number. The fundamental solution of Laplace equation is used for obtaining boundary element method (BEM) matrices whereas all the other terms in the differential equations governing the flows are considered as nonhomogeneity. This is the main advantage of DRBEM to tackle the nonlinearities in the equations with considerably small computational cost. All the convective terms are evaluated by using the DRBEM coordinate matrix which is already computed in the formulation of nonlinear terms. The resulting systems of initial value problems with respect to time are solved with forward and central differences using relaxation parameters, and the fourth-order Runge-Kutta method. The numerical stability analysis is developed for the flow problems considered with respect to the choice of the time step, relaxation parameters and problem constants. The stability analysis is made through an eigenvalue decomposition of the final coefficient matrix in the DRBEM discretized system. It is found that the implicit central difference time integration scheme with relaxation parameter value close to one, and quite large time steps gives numerically stable solutions for all flow problems solved in the thesis. One-and-two-sided lid-driven cavity flow, natural and mixed convection flows in cavities, natural convection flow of nanofluids and micropolar fluids in enclosures are solved with several geometric configurations. The solutions are visualized in terms of streamlines, vorticity, microrotation, pressure contours, isotherms and flow vectors to simulate the flow behaviour.
58

Natural Convection Heat Transfer in Two-Fluid Stratified Pools with Internal Heat Sources

Gubaidullin, Askar January 2001 (has links)
No description available.
59

Aspect Ratio Effect on Melting and Solidification During Thermal Energy Storage

Sridharan, Prashanth 01 January 2013 (has links)
The present work investigates, numerically, the process of melting and solidification in hollow vertical cylinders, filled with air and phase change material (PCM). The PCM used is sodium nitrate, which expands upon melting. Therefore, a void must be present within the cylinder, which is filled with air. The influence of cylinder shape on melting time is determined. The numerical model takes both conductive and convective heat transfer into account during the melting process. The Volume-of-Fluid (VOF) model is used to track the interface between the PCM and air as the PCM melts. Three dimensionless numbers represent the characteristics of the problem, which are the Grashof, Stefan, and Prandtl numbers. The Stefan and Prandtl numbers are held constant, while the Grashof number varies. Inner Aspect Ratio (AR) is used to characterize the shape of the cylinder, which is defined as the ratio of the height to the diameter of the vertical cylinder. In this study, a range of AR values from 0.23 to 10 is investigated. Cylinders with small AR, corresponding to high Grashof numbers, lead to lower melting times compared with cylinders with high AR. The molten PCM velocity was also influenced greatly by this difference between solid PCM shape between high and low AR cases. Cylinders with small AR, corresponding to high Grashof numbers, lead to higher solidification times compared with cylinders with high AR. It was found that the velocity decreased during the solidification process, but the shape of the cylinder had an effect on the decrease. Natural convection velocity was found to decrease during the solidification process and, therefore, its effects diminish as solidification proceeds.
60

SIMULTANEOUS CHARGING AND DISCHARGING OF A LATENT HEAT ENERGY STORAGE SYSTEM FOR USE WITH SOLAR DOMESTIC HOT WATER

Murray, Robynne 26 July 2012 (has links)
Sensible energy storage for solar domestic hot water (SDHW) systems is space consuming and heavy. Latent heat energy storage systems (LHESSs) offer a solution to this problem. However, the functionality of a LHESS during simultaneous charging/discharging, an operating mode encountered when used with a SDHW, had not been studied experimentally. A small scale vertical cylindrical LHESS, with dodecanoic acid as the phase change material (PCM), was studied during separate and simultaneous charging/discharging. Natural convection was found to have a strong influence during melting, but not during solidification. During simultaneous operation heat transfer was limited by the high thermal resistance of the solid PCM. However, when the PCM was melted, direct heat transfer occurred between the hot and cold heat transfer fluids, indicating the significance of the PCM phase on heat transfer in the system. The results of this research will lead to more optimally designed LHESS for use with SDHW. ?

Page generated in 0.0809 seconds