• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Uncovering the genetic basis of natural variation of leaf form in Cardamine hirsuta

Lamb, Jonathan January 2015 (has links)
A major goal in biology is to understand the genetic basis of morphological variation at different evolutionary scales, for example between and within species. Here I investigate this issue by using plant leaves as an example. Previously comparative studies between the simple leaf model plant Arabidopsis thaliana and its dissected leaf relative Cardamine hirsuta have shown that inter-specific differences in leaf shape mostly result from variation in local tissue growth and patterning (Vlad et al., 2014; Hay et al., 2006; Barkoulas et al., 2008). Here, I aim to elucidate the genetic basis of natural variation in leaf form within species, by using divergent strains of C. hirsuta. I present evidence that variation in six strains collected from geographically diverse locations results from different rates of progression of an age-dependent leaf development programme in a phenomenon known as heteroblasty. By using Quantitative trait loci (QTL) mapping with a recombinant inbred line (RIL) population derived from a cross between the Oxford and Azores strains, I detected six QTL that influence leaflet production on multiple leaves. A QTL located on the 4th linkage group was validated and selected for further analysis. Characterisation of QTL effect indicated that the QTL influences leaf form by altering the rate of heteroblastic development. Subsequently I fine mapped this QTL to a DNA segment of 48 kb containing the gene SQUAMOSA PROMOTER PROTEIN BINDING LIKE 9 (ChSPL9), a previously characterised regulator of age dependent development. The parental alleles of ChSPL9 show variation in their sequence and were transformed into A. thaliana to evaluate whether they contribute to the QTL effect. Resultant phenotypes mirrored the QTL effect suggesting that ChSPL9 does indeed contribute to this QTL effect. These results indicate that age-dependent leaf shape progression underlies variation in leaflet number within species and more broadly suggest that in the case of plant leaves different processes might underlie morphological variation between and within species.
22

Control of shoot and root growth by water deficit in Arabidopsis thaliana : a parallel analysis using artificial and natural mapping populations / Contrôle des croissances foliaires et racinaires en situation de déficit hydrique : analyse comparée de populations de cartographie naturelles et artificielles

Bouteillé, Marie 11 July 2011 (has links)
Le maintien de la croissance foliaire en situation de déficit hydrique résulte du maintien de l´absorption racinaire et de la production de biomasse au niveau foliaire. Pour optimiser les deux processus, la plante ajuste la croissance de ses organes, et la répartition de la biomasse produite, entre les différents organes (root/shoot ratio) ou au sein de chaque organe (surface foliaire spécifique, longueur racinaire spécifique). Les principaux objectifs de ce travail de thèse étaient (i) d´évaluer l´impact des modifications de répartition de biomasse sur le maintien de la croissance foliaire en situation de déficit hydrique, (ii) de relier la réponse de la croissance d´un génotype aux caractéristiques de son habitat d´origine, and (iii) d´identifier les régions du génome responsables de la variation des croissances foliaires et racinaires en situation de déficit hydrique. Différent types de populations d´Arabidopsis thaliana ont été utilisés, une population de lignées recombinantes, ainsi que différents groupes d´accessions collectées dans des environnements naturels contrastés. Une analyse des relations allométriques entre les variables foliaires et racinaires en conditions de culture optimales puis en situation de déficit hydrique a permis de mettre en évidence le rôle clé de la surface foliaire spécifique dans l´amélioration de la tolérance au déficit hydrique. Une caractérisation détaillée du climat des régions dans lesquelles les accessions avaient été collectées a permis de faire le lien entre la tolérance accrue de certains génotypes et la faible balance climatique dans laquelle ils évoluaient. Enfin, en utilisant ces génotypes, une analyse de génétique quantitative (combinant recherche de QTL et génétique d´association) a été menée. Les régions génomiques controllant les croissances foliaires et racinaires étaient très liées, en particulier en situation hydrique optimale, mais le calcul de variables utilisant la croissance de la plante comme cofacteur a permis d´identifier des régions spécifiques de la croissance racinaire, dont une a été confirmée en utilisant des lignées quasi isogéniques. En situation de contrainte hydrique, les déterminants génétiques des croissances foliaires et racinaires étaient moins liés, et plusieurs régions très fortement associées spécifiquement aux variations de croissance racinaire ou foliaire ont été détectées. Des régions associées au maintien de la croissance foliaire en situation de déficit hydrique ont pu être mises en évidence, et la précision des études de génétique d´association a permis de réveler la présence de gènes d´intéret dans ces régions. / Growth maintenance under water deficit mainly results from the maintenance of water uptake at the root level,and assimilates production by leaves. To optimize both processes, plant need to adjust organ growth and biomassallocation patterns between roots and shoots (root/shoot ratio), but also within the organs, through specific leaf areaand specific root length variations. The main objectives of this study were (i) to evaluate the impact of growth andbiomass allocation patterns modifications on growth maintenance under drought conditions, (ii) to rely the genotypicresponses to water deficit conditions and the climatic features of the natural environment in which they evolved, and(iii) to identify the key genetic regions responsible for shoot and root growth variation in response to water deficitconditions. We used different sets of genotypes, a population of recombinant inbred lines, and different sets ofaccessions of Arabidopsis thaliana, collected in a wide range of environments. An analysis of the allometricrelationships between shoot and root growth related variables under both well watered and water deficit conditionsallowed to highlight the importance of specific leaf area plasticity to maintain plant growth under water deficit. Adetailed climatic characterization of the natural habitats of the accessions studied, combined to the evaluation ofgrowth response to water deficit in these accessions allowed connecting low climatic water balance to better toleranceto water deficit conditions in specific regions, suggesting that this climatic feature could have shaped the evolution ofgenotypes in certain regions. Finally, using these two sets of genotypes, joint linkage and linkage disequilibriumanalysis were performed on growth related traits under well watered and water deficit conditions. Some genetic regionsinvolved in the control of root and shoot related traits were strongly coupled, especially in well watered experiments,but we managed to identify root specific regions using calculated variables that takes global plant growth as a cofactor.Under water deficit, the regions controlling root and shoot growth were less associated, and very strong QTL weredetected, specifically associated to one or the other part. Genomic regions associated to growth response to waterdeficit were also detected, and the accuracy of association mapping enabled to identify target genes that could be playa role in growth maintenance under drought.
23

Decoding the complexity of natural variation for shoot growth and response to the environment in Arabidopsis thaliana / Décoder la complexité de la variabilité naturelle pour la croissance et la réponse à l’environnement chez Arabidopsis thaliana

Trontin, Charlotte 21 May 2013 (has links)
Des génotypes adaptés à des environnements contrastés ont de grandes chances de se comporter différemment lorsqu’ils sont placés dans des conditions similaires et contrôlées, notamment si leur sensibilité aux signaux environnementaux et/ou leur croissance intrinsèque sont limitées à différents niveaux. De ce fait, la variabilité observée dans les populations naturelles peut être utilisée comme une source illimitée de nouveaux allèles ou gènes pour l’étude des bases génétiques de la variation des traits quantitatifs. Mon travail de doctorat a consisté en l’analyse de la variabilité naturelle pour la croissance et la réponse à l’environnement chez Arabidopsis thaliana. Le but des approches de génétique quantitative est de comprendre comment la diversité génétique et épigénétique contrôle la variabilité phénotypique observée dans les populations à différentes échelles, au cours du développement et sous différentes contraintes environnementales. De plus, ces analyses ont pour objectif de comprendre comment les processus adaptatifs et démographiques influencent la fréquence de ces variants dans les populations en fonction de leur environnement local. Ainsi, l’étude de la variabilité naturelle peut être appréhendée en utilisant diverses approches, de la génétique et des méthodes de biologie moléculaire aux études écologiques et évolutives. Au cours de mon doctorat, j’ai eu la chance de travailler sur plusieurs de ces aspects au travers de trois projets indépendants qui exploitent tous la variabilité naturelle d’A. thaliana.Le premier projet a consisté en l’analyse du pattern de polymorphisme observé dans des populations d’A. thaliana au gène MOT1 qui code pour un transporteur de molybdate (la forme assimilable du molybdène (Mo), un micro-élément essentiel) et qui est responsable d’une partie des variations de croissance et de fitness observées à l’échelle de l’espèce en fonction de la disponibilité en Mo des sols. J’ai montré à différentes échelles géographiques que le pattern de polymorphisme à MOT1 ne reflète pas une évolution neutre mais présente plutôt des traces de sélection diversifiante. Ce travail a contribué à renforcer l’hypothèse selon laquelle des mutations au niveau du gène MOT1 pourraient avoir été sélectionnées dans certaines populations pour faire face aux niveaux élevés de Mo observés dans certains sols et potentiellement délétères malgré leur effet négatif sur des milieux pauvres en Mo.Le deuxième projet portait sur la caractérisation et l’analyse fonctionnelle de deux récepteur-kinase putatifs (RLK) identifiés de part leurs effets sur la croissance foliaire spécifiquement en réponse à un stress induit par du mannitol mais pas sous d’autres contraintes osmotiques. La fonction de ces récepteurs chez A. thaliana -qui n’est pas connu pour produire du mannitol- peut paraître intrigante. Les différentes expériences réalisées au cours de cette thèse nous ont cependant permis de construire un modèle selon lequel ces récepteurs pourraient être activés par le mannitol produit par certains pathogènes tel que les champignons et participer aux réponses de défense de la plante.Le troisième projet a été réalisé en collaboration avec l’équipe de Michel Vincentz (CBMEG, Brésil) et de Vincent Colot (IBENS, Paris) et consiste en l’analyse de l’occurrence de variants épigénétiques naturels au gène QQS dans différentes populations d’Asie Centrale et de leurs possibles conséquences phénotypique et adaptative.En conclusion, l’analyse des variants génétiques et épigénétiques naturels à l’origine des variations de biomasse en interaction avec l’environnement permet de comprendre comment l’évolution façonne la variabilité naturelle. / Genotypes adapted to contrasting environments are expected to behave differently when placed in common controlled conditions, if their sensitivity to environmental cues or intrinsic growth behaviour are set to different thresholds, or are limited at distinct levels. This allows natural variation to be exploited as an unlimited source of new alleles or genes for the study of the genetic basis of quantitative trait variation. My doctoral work focuses on analysing natural variation for shoot growth and response to the environment in A. thaliana. Natural variation analyses aim at understanding how molecular genetic or epigenetic diversity controls phenotypic variation at different scales and times of plant development and under different environmental conditions, and how selection or demographic processes influence the frequency of those molecular variants in populations for them to get adapted to their local environment. As such, the analysis of A. thaliana natural variation can be addressed using a variety of approaches, from genetics and molecular methods to ecology and evolutionary questions. During my PhD, I got the chance to tackle several of those aspects through my contributions to three independent projects which have in common to exploit A. thaliana natural variation. The first one is the analysis of the pattern of polymorphism from a set of 102 A. thaliana accessions at the MOT1 gene coding for a molybdate transporter (an essential micronutrient) and responsible for contrasted growth and fitness among accessions in response to Mo availability in the soil. I showed at different geographical scales that MOT1 pattern of polymorphisms is not consistent with neutral evolution and shows signs of diversifying selection. This work helped reinforce the hypothesis that in some populations, mutations in MOT1 have been selected to face soils rich in Mo and potentially deleterious despite their negative effect on Mo-limiting soils. The second project consists in the characterisation and functional analysis of two putative receptor-like kinases (RLKs) identified from their effect on shoot growth specifically under mannitol-supplemented media and not in response to other osmotic constraints. The function of such RLKs in A. thaliana, which is not known to synthesize mannitol was intriguing at first but, through different experiments, we built the hypothesis that those RLKs could be activated by the mannitol produced by some pathogens such as fungi and participate to plant defensive response. The third project, in collaboration with Michel Vincentz’s team from CBMEG (Brasil) and Vincent Colot (IBENS, Paris), consists in the analysis of the occurrence of natural epigenetic variants of the QQS gene in different populations from Central Asia and their possible phenotypic and adaptive consequences. Overall, these analyses of the genetic and epigenetic molecular variation leading to the biomass phenotype(s) in interaction with the environment provide clues as to how and where in the pathways adaptation is shaping natural variation.

Page generated in 0.0874 seconds