• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

human-robot motion : an attention-based approach / Mouvement homme-robot : une approche basée sur l'attention

Paulin, Rémi 22 March 2018 (has links)
Pour les robots mobiles autonomes conçus pour partager notre environnement, la sécurité et l'efficacité de leur trajectoire ne sont pas les seuls aspects à prendre en compte pour la planification de leur mouvement: ils doivent respecter des règles sociales afin de ne pas gêner les personnes environnantes. Dans un tel contexte social, la plupart des techniques de planification de mouvement actuelles s'appuient fortement sur le concept d'espaces sociaux; de tels espaces sociaux sont cependant difficiles à modéliser et ils sont d'une utilisation limitée dans le contexte d'interactions homme-robot où l'intrusion dans les espaces sociaux est nécessaire. Ce travail présente une nouvelle approche pour la planification de mouvements dans un contexte social qui permet de gérer des environnements complexes ainsi que des situation d’interaction homme-robot. Plus précisément, le concept d'attention est utilisé pour modéliser comment l'influence de l'environnement dans son ensemble affecte la manière dont le mouvement du robot est perçu par les personnes environnantes. Un nouveau modèle attentionnel est introduit qui estime comment nos ressources attentionnelles sont partagées entre les éléments saillants de notre environnement. Basé sur ce modèle, nous introduisons le concept de champ attentionnel. Un planificateur de mouvement est ensuite développé qui s'appuie sur le champ attentionnel afin de produire des mouvements socialement acceptables. Notre planificateur de mouvement est capable d'optimiser simultanément plusieurs objectifs tels que la sécurité, l'efficacité et le confort des mouvements. Les capacités de l'approche proposée sont illustrées sur plusieurs scénarios simulés dans lesquels le robot est assigné différentes tâches. Lorsque la tâche du robot consiste à naviguer dans l'environnement sans causer de distraction, notre approche produit des résultats prometteurs même dans des situations complexes. Aussi, lorsque la tâche consiste à attirer l'attention d'une personne en vue d'interagir avec elle, notre planificateur de mouvement est capable de choisir automatiquement une destination qui exprime au mieux son désir d'interagir, tout en produisant un mouvement sûr, efficace et confortable. / For autonomous mobile robots designed to share their environment with humans, path safety and efficiency are not the only aspects guiding their motion: they must follow social rules so as not to cause discomfort to surrounding people. Most socially-aware path planners rely heavily on the concept of social spaces; however, social spaces are hard to model and they are of limited use in the context of human-robot interaction where intrusion into social spaces is necessary. In this work, a new approach for socially-aware path planning is presented that performs well in complex environments as well as in the context of human-robot interaction. Specifically, the concept of attention is used to model how the influence of the environment as a whole affects how the robot's motion is perceived by people within close proximity. A new computational model of attention is presented that estimates how our attentional resources are shared amongst the salient elements in our environment. Based on this model, the novel concept of attention field is introduced and a path planner that relies on this field is developed in order to produce socially acceptable paths. To do so, a state-of-the-art many-objective optimization algorithm is successfully applied to the path planning problem. The capacities of the proposed approach are illustrated in several case studies where the robot is assigned different tasks. Firstly, when the task is to navigate in the environment without causing distraction our approach produces promising results even in complex situations. Secondly, when the task is to attract a person's attention in view of interacting with him or her, the motion planner is able to automatically choose a destination that best conveys its desire to interact whilst keeping the motion safe, efficient and socially acceptable.

Page generated in 0.1967 seconds