• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Reinforcement Learning on Social Environment Aware Navigation based on Maps

Sanchez, Victor January 2023 (has links)
Reinforcement learning (RL) has seen a fast expansion in recent years of its successful application to a range of decision-making and complex control tasks. Moreover, deep learning offers RL the opportunity to enlarge its spectrum of complex fields. Social Robotics is a domain that involves challenges like Human-Robot Interaction which bears inspiration for development in deep RL. Autonomous systems demand a fast and efficient environment perception so as to guarantee safety. However, while being attentive to its surrounding, a robot needs to take decisions to navigate optimally and avoid potential obstacles. In this thesis, we investigate a deep RL method for mobile robot end-to-end navigation in a social environment. Using the observation collected in a simulation environment, a convolutional neural network is trained to predict an appropriate set of discrete angular and linear velocities for a robot based on its egocentric local occupancy grid map. We compare a random learning way to a curriculum learning approach to ameliorate speed convergence during training. We divide the main problem by analysing separately end-to-end navigation and obstacle avoidance in static and dynamic environments. For each problem, we propose an adaptation that aims to improve the surrounding awareness of the agent. The qualitative and quantitative evaluations of the investigated approach were performed in simulations. The results show that the end-to-end navigation map-based model is easy to set up and shows similar performance as a Model Predictive Control approach. However, we discern that obstacle avoidance is harder to translate to a deep RL framework. Despite this difficulty, using different RL methods and configurations will definitely help and bring ideas for improvement for future work. / Förstärkande Inlärning (RL) har sett en snabb expansion de senaste åren för sin fruktbara tillämpning på en rad beslutsfattande och komplexa kontrolluppgifter. Dessutom erbjuder djupinlärning RL möjligheten att utöka sitt spektrum till komplexa områden. Social Robotics är en domän som involverar utmaningar som människa-robot interaktion som bär inspiration för utveckling i djup RL. Autonoma system kräver en snabb och effektiv miljöuppfattning för att garantera säkerheten. Men samtidigt som den är uppmärksam på sin omgivning, måste en robot fatta beslut för att navigera optimalt och undvika potentiella hinder. I detta examensarbete undersöker vi en djup RL-metod för mobil robot-end-to-end-navigering i en social miljö. Med hjälp av observationen som samlats in i en simuleringsmiljö tränas ett faltningsneuralt nätverk för att förutsäga en lämplig uppsättning diskreta vinkel- och linjärhastigheter för en robot baserat på dess egocentriska rutnätskarta över lokala beläggningar. Vi jämför ett slumpmässigt inlärningssätt med läroplansinlärningsmetod för att förbättra hastighetskonvergensen. Vi delar upp huvudproblemet genom att separat analysera end-to-end-navigering och undvikande av hinder i statisk och dynamisk miljö. För varje problem föreslår vi en anpassning som syftar till att agenten bättre förstår sin omgivning. De kvalitativa och kvantitativa utvärderingarna av det undersökta tillvägagångssättet utfördes endast i simuleringar. Resultaten visar att den heltäckande navigationskartbaserade modellen är lätt att distribuera och visar liknande prestanda som en modell för prediktiv kontroll. Vi ser dock att undvikande av hinder är svårare att översätta till ett djupt RL-ramverk. Trots denna svårighet kommer användning av olika RL-metoder och konfiguration definitivt att hjälpa och ge idéer om förbättringar för framtida arbete. / L’apprentissage par renforcement (RL) a connu une expansion rapide ces dernières années pour ses applications à une gamme de tâches de prise de décision et de contrôle complexes. Le deep learning offre au RL la possibilité d’élargir son spectre à des domaines complexes. La robotique sociale est un domaine qui implique des défis tels que l’interaction homme-robot, source d’inspiration pour le développement en RL profond. Les systèmes autonomes exigent une perception rapide et efficace de l’environnement afin de garantir la sécurité. Cependant, tout en étant attentif à son environnement, un robot doit prendre des décisions pour naviguer de manière optimale et éviter les obstacles potentiels. Dans cette thèse, nous étudions une méthode de RL profond pour la navigation de bout a bout de robots mobiles dans un environnement social. À l’aide de l’observation recueillie dans un environnement de simulation, un réseau neuronal convolutif prédit un ensemble adapté de vitesses angulaires et linéaires discrètes pour un robot en fonction de sa carte de grille d’occupation locale égocentrique. Nous comparons une méthode d’apprentissage aléatoire à une approche d’apprentissage du curriculum pour accelerer la convergence durant l’entrainement. Nous divisons le problème principal en analysant séparément la navigation de bout a bout et l’évitement d’obstacles dans un environnement statique et dynamique. Pour chaque problème, nous proposons une adaptation visant à ce que l’agent comprenne mieux son environnement. Les évaluations qualitatives et quantitatives de l’approche étudiée ont été effectuées uniquement dans des simulations. Les résultats montrent que le modèle basé sur la carte de navigation de bout en bout est facile à déployer et affiche des performances similaires à celles d’une approche de contrôle prédictif de modèle. Cependant, nous discernons que l’évitement d’obstacles est plus difficile à traduire dans un cadre RL profond. Malgré cette difficulté, l’utilisation de différentes méthodes et configurations RL aidera certainement et apportera une idée d’amélioration pour les travaux futurs.

Page generated in 0.1431 seconds