• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação de dispositivos robóticos móveis com ênfase no planejamento de trajetórias para navegação / Mobile robotic devices simulation with emphasis in trajectory planning for navigation

Mainardi, Augusto Seganfredo 16 August 2018 (has links)
Orientador: João Maurício Rosário / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-16T12:12:48Z (GMT). No. of bitstreams: 1 Mainardi_AugustoSeganfredo_M.pdf: 4938710 bytes, checksum: c6b32726ef03c92f5c518f1eaabdf37c (MD5) Previous issue date: 2010 / Resumo: Neste trabalho é proposto um sistema de navegação autônomo para dispositivos robóticos móveis capaz de operar e se adaptar a diferentes ambientes e condições, contribuindo para o desenvolvimento de uma navegação robusta e confiável. O sistema é baseado na arquitetura híbrida AuRA, assim, foi separado em quatro componentes: percepção do ambiente, localização e mapeamento, planejamento de movimento e execução da trajetória. A percepção do ambiente é o componente responsável em converter as leituras dos sensores em informações sobre o ambiente. Considerando os sensores usadas da plataforma robótica móvel ASURO, este componente baseia-se na informações obtidas através da odometria e dos sensores seguidores de linha, informando ao sistema a distância percorrida e a posição do robô em relação a pista a ser seguida. O mapeamento do sistema baseou-se em mapas topológicos devido ao baixo custo computacional necessário e à semelhança com a maneira humana de localizar-se, utilizando a odometria como sistema de localização do robô e sensores seguidores de linha para determinação de seu posicionamento. O planejamento de movimentos foi dividido em duas fases. No planejamento de caminho utilizou-se o algoritmo de Dijkstra para determinar por quais nós ele deve passar para atingir seu objetivo; e para o planejamento de trajetória utilizou-se uma abordagem baseada no caminho de Dubins. A execução da trajetória baseou-se no método de Motor-Schemas, onde as respostas dos atuadores são determinadas pela soma vetorial dos vetores resultantes de cada comportamento. Foram estudadas duas formas de comportamento: o de seguir o objetivo que utiliza o planejamento de movimento para determinar as velocidades dos atuadores; e o de seguir uma linha, que utiliza a percepção do ambiente para determinar as velocidades dos atuadores. As implementações experimentais foram realizadas a partir do ambiente de simulação DD&GP desenvolvido para o ambiente MATLABSimulink®, que permitiu a avaliação do sistema a partir de duas aplicações (transporte e inspeção) efetuada em três ambientes diferentes (fábrica, escritório e sistema de tubulação). Além disso, utilizou-se a plataforma robótica móvel ASURO para verificar a percepção do ambiente e validar os resultados encontrados nas simulações. Os resultados obtidos nas implementações experimentais foram satisfatórios e mostram que o sistema apresentado é promissor / Abstract: In this work is proposed an autonomous navigation system for mobile robotic devices able to operate and adapt to different environments and conditions, contributing to the development of a robust and reliable navigation system. The system is based on hybrid architecture AuRA, thus, it was separated into four components: Perceptions of the environment, Localization and Mapping, Motion planning and Trajectory execution. The perception of the environment is the component responsible for converting the readings in sensors in environmental information. Considering the sensors used in mobile robotics platform ASURO, this component is based on information obtained from odometry and line following sensors, informing the system the distance traveled and the robot's position in relation to the track to be followed. The mapping of the system is based on topological maps due low computational cost required and its resemblance to the human way of locating themselves and the use of little computer memory, using the odometry as robot's localization system and line following sensors to determine their placement. The Motion planning was divided into two phases. In path planning was used Dijkstra's algorithm to determine for which node the robot must pass to achieve your goal; and for trajectory planning was used an approach based on Dubins path. The trajectory execution is based on the method of motor-schemas, where the responses of the actuators are determined by the vector sum of the resulting vectors from each behavior. Were studied two forms of behaviors: follow the goal, which uses the motion planning to determine the velocity of actuators; and follow a line, which uses the perception of the environment to determine the velocity of actuators. The experimental implementations were realized from the simulation environment DD&GP developed for the MATLAB-Simulink ®, which allowed the evaluation of the system after two applications (transport and inspection) performed in three different environments (factory, office and piping system). In addition, was used the platform for mobile robotics ASURO to verify the perception of the environment and validate the results found in the simulations. The results obtained in experimental implementations were satisfactory and showed that the system presented is promising / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
2

Navegação de robôs móveis assistivos por controle compartilhado baseado em campos vetoriais / Navigation of assistive mobile robots by shared control based on vector fields

Olivi, Leonardo Rocha, 1982- 26 August 2018 (has links)
Orientador: Eleri Cardozo / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T06:38:13Z (GMT). No. of bitstreams: 1 Olivi_LeonardoRocha_D.pdf: 17712423 bytes, checksum: a9b0ec521405e93735844f7ce8b3b968 (MD5) Previous issue date: 2014 / Resumo: A mobilidade é uma competência humana extremamente valiosa, e pode ser perdida por diversas razões, tais como traumas na coluna vertebral, acidentes vasculares cerebrais, dentre outras. Algumas tecnologias desenvolvidas para as áreas médicas, como eletroencefalografia e eletromiografia, podem ser empregadas no desenvolvimento de Interfaces Humano-Máquina (Human-Machine Interface, ou, HMI) com o objetivo de permitir que pessoas com capacidades motoras severamente comprometidas possam comunicar e operar os mais diversos equipamentos. Assim, esses usuários podem conduzir robôs móveis por meio de uma HMI adaptada para suas capacidades motoras e cognitivas. Entretanto, essas interfaces apresentam erros na identificação da ação pretendida pelo usuário, os quais comprometem sobremaneira a experiência desse usuário na interação com o mundo exterior. Para o caso dos robôs móveis assistivos, o conceito de controle compartilhado (shared control) foi concebido para compensar as taxas de erros das HMIs, e a responsabilidade pela navegação do robô é dividida entre o usuário e um sistema supervisor automático. As abordagens mais populares na literatura comutam poucos modos de comportamentos específicos para situações individualizadas, como passagens estreitas e desvio de obstáculos. Esta tese propõe uma nova técnica de controle compartilhado, denominada de navegação assistida por campos vetoriais, a qual não possui modos de operação chaveados, evitando quaisquer instabilidades e abrangendo as configurações do ambiente de maneira ilimitada, além de minimizar significativamente os erros gerados pelas HMIs e facilitar a navegação do usuário. Os campos vetoriais oferecem as navegações manual e autônoma, ampliando a interação do usuário com o ambiente. Nessa nova técnica, o sistema de controle embarcado irá executar a ação identificada pela HMI em função dos estados do robô e do ambiente, com o objetivo de maximizar a segurança e capacidade de controle do usuário. Os resultados mostrados neste trabalho evidenciam uma nova forma de tratar o problema, obtendo ganhos significativos com relação ao estado da arte, com baixa complexidade computacional, alta flexibilidade a ambientes e usuários e otimização efetiva de erros, contribuindo para a recuperação da mobilidade dos usuários / Abstract: Human mobility is an extremely valued skill that can be lost due to various reasons, such as spinal cord injuries, strokes, amputations, among others. Technologies developed for the medical areas, such as electroencephalography and electromyography, can be employed in the development of Human-Machine Interfaces (HMI) with the objective of allowing people with severe mobility impairments to communicate and to operate a wide range of equipments. Therefore, these users are allowed to conduct assistive robots allow through a HMI designed according to the user's mobility and cognitive skills. However, these interfaces still present low performance in the correct identification of the intended action by the user, which severely compromise the experience of the user when interacting with external world. In the specific case of assistive mobile robots, a shared control concept was developed in order to compensate the high error rates produced by the HMIs, where the responsibility for the navigation of the mobile robot is shared among the user and an autonomous supervisor system. The mainly approaches shown in literature switch a few modes of specific behavior for individualized situations, such as narrow corridors and obstacle avoidance. This work presents a novel shared control technique, named assistive navigation by vector fields, which does not employ switching modes, avoiding any instabilities and covering the unlimited environment configurations, significantly minimizing the HMI errors, facilitating the user's navigation. The vector fields offer both manual and autonomous navigation, increasing the user's interaction with the environment. In this novel technique, the embedded control system incorporates the HMI command with the robot and environment states, aiming the maximization of user's security and control capabilities. Results shown a novel manner for treating the problem, obtaining substantial gains over the state of art works, with low computational complexity, high flexibility concerning environments and users and effective optimization of errors, contributing for the user's mobility retrieval / Doutorado / Automação / Doutor em Engenharia Elétrica

Page generated in 0.1273 seconds