• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation continue de la pose d'un équipement tenu en main par fusion des données visio-inertielles pour les applications de navigation piétonne en milieux urbains / Continuous pose estimation of handheld device by fusion of visio-inertial data for pedestrian navigation applications in urban environments

Antigny, Nicolas 18 October 2018 (has links)
Pour assister la navigation piétonne dans les espaces urbains et intérieurs, une estimation précise de la pose (i.e. la position 3D et l'orientation3D) d'un équipement tenu en main constitue un point essentiel dans le développement d'outils d'aide à la mobilité (e.g. applications de réalité augmentée). Dans l'hypothèse où le piéton n'est équipé que d'appareils grand public, l'estimation de la pose est limitée à l'utilisation de capteurs à faible coût intégrés dans ces derniers (i.e. un récepteur GNSS, une unité de mesure inertielle et magnétique et une caméra monoculaire). De plus, les espaces urbains et intérieurs, comprenant des bâtiments proches et des éléments ferromagnétiques, constituent des zones difficiles pour la localisation et l'estimation de la pose lors de grands déplacements piétons.Cependant, le développement récent et la mise à disposition d'informations contenues dans des Systèmes d'Information Géographiques 3D constituent une nouvelle source de données exploitable pour la localisation et l'estimation de la pose. Pour relever ces défis, cette thèse propose différentes solutions pour améliorer la localisation et l'estimation de la pose des équipements tenus en main par le piéton lors de ses déplacements en espaces urbains et intérieurs. Les solutions proposées intègrent l'estimation de l'attitude basée inertielle et magnétique, l'odométrie visuelle monoculaire mise à l'échelle grâce à l'estimation des déplacements du piéton, l'estimation absolue de la pose basée sur la reconnaissance d'objets SIG 3D parfaitement connus et la mise à jour en position de la navigation à l'estime du piéton.Toutes ces solutions s'intègrent dans un processus de fusion permettant d'améliorer la précision de la localisation et d'estimer en continu une pose qualifiée de l'appareil tenu en main.Cette qualification est nécessaire à la mise en place d'un affichage en réalité augmentée sur site. Pour évaluer les solutions proposées, des données expérimentales ont été recueillies au cours de déplacements piétons dans un espace urbain avec des objets de référence et des passages intérieurs. / To support pedestrian navigation in urban and indoor spaces, an accurate pose estimate (i.e. 3Dposition and 3D orientation) of an equipment held inhand constitutes an essential point in the development of mobility assistance tools (e.g.Augmented Reality applications). On the assumption that the pedestrian is only equipped with general public devices, the pose estimation is restricted to the use of low-cost sensors embedded in the latter (i.e. an Inertial and Magnetic Measurement Unit and a monocular camera). In addition, urban and indoor spaces, comprising closely-spaced buildings and ferromagnetic elements,constitute challenging areas for localization and sensor pose estimation during large pedestrian displacements.However, the recent development and provision of data contained in 3D Geographical Information System constitutes a new wealth of data usable for localization and pose estimation.To address these challenges, this thesis proposes solutions to improve pedestrian localization and hand-held device pose estimation in urban and indoor spaces. The proposed solutions integrate inertial and magnetic-based attitude estimation, monocular Visual Odometry with pedestrian motion estimation for scale estimation, 3D GIS known object recognition-based absolute pose estimation and Pedestrian Dead-Reckoning updates. All these solutions are fused to improve accuracy and to continuously estimate a qualified pose of the handheld device. This qualification is required tovalidate an on-site augmented reality display. To assess the proposed solutions, experimental data has been collected during pedestrian walks in an urban space with sparse known objects and indoors passages.
2

Towards new sensing capabilities for legged locomotion using real-time state estimation with low-cost IMUs / Vers de nouvelles capacités de perception pour les robotes à jambes à l'aide de l'estimation d'états temps réel avec des centrales inertielles à bas coût

Atchuthan, Dinesh 23 October 2018 (has links)
L'estimation en robotique est un sujet important affecté par les compromis entre certains critères majeurs parmi lesquels nous pouvons citer le temps de calcul et la précision. L'importance de ces deux critères dépend de l'application. Si le temps de calcul n'est pas important pour les méthodes hors ligne, il devient critique lorsque l'application doit s'exécuter en temps réel. De même, les exigences de précision dépendent des applications. Les estimateurs EKF sont largement utilisés pour satisfaire les contraintes en temps réel tout en obtenant une estimation avec des précisions acceptables. Les centrales inertielles (Inertial Measurement Unit - IMU) demeurent des capteurs répandus dnas les problèmes d'estimation de trajectoire. Ces capteurs ont par ailleurs la particularité de fournir des données à une fréquence élevée. La principale contribution de cette thèses est une présentation claire de la méthode de préintégration donnant lieu à une meilleure utilisation des centrales inertielles. Nous appliquons cette méthode aux problèmes d'estimation dans les cas de la navigation piétonne et celle des robots humanoïdes. Nous souhaitons par ailleurs montrer que l'estimation en temps réel à l'aide d'une centrale inertielle à faible coût est possible avec des méthodes d'optimisation tout en formulant les problèmes à l'aide d'un modèle graphique bien que ces méthodes soient réputées pour leurs coûts élevés en terme de calculs. Nous étudions également la calibration des centrales inertielles, une étape qui demeure critique pour leurs utilisations. Les travaux réalisés au cours de cette thèse ont été pensés en gardant comme perspective à moyen terme le SLAM visuel-inertiel. De plus, ce travail aborde une autre question concernant les robots à jambes. Contrairement à leur architecture habituelle, pourrions-nous utiliser plusieurs centrales inertielles à faible coût sur le robot pour obtenir des informations précieuses sur le mouvement en cours d'exécution ? / Estimation in robotics is an important subject affected by trade-offs between some major critera from which we can cite the computation time and the accuracy. The importance of these two criteria are application-dependent. If the computation time is not important for off-line methods, it becomes critical when the application has to run on real-time. Similarly, accuracy requirements are dependant on the applications. EKF estimators are widely used to satisfy real-time constraints while achieving acceptable accuracies. One sensor widely used in trajectory estimation problems remains the inertial measurement units (IMUs) providing data at a high rate. The main contribution of this thesis is a clear presentation of the preintegration theory yielding in a better use IMUs. We apply this method for estimation problems in both pedestrian and humanoid robots navigation to show that real-time estimation using a low- cost IMU is possible with smoothing methods while formulating the problems with a factor graph. We also investigate the calibration of the IMUs as it is a critical part of those sensors. All the development made during this thesis was thought with a visual-inertial SLAM background as a mid-term perspective. Firthermore, this work tries to rise another question when it comes to legged robots. In opposition to their usual architecture, could we use multiple low- cost IMUs on the robot to get valuable information about the motion being executed?

Page generated in 0.0727 seconds