• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização do querosene através da espectroscopia de infravermelho próximo. / Characterization of kerosene by near infrared spectroscopy.

Camolesi, Valmir José 23 April 2009 (has links)
Ensejou-se obter a caracterização do Querosene via espectroscopia de infravermelho próximo com o objetivo de se instalar um analisador NIR (Near InfraRed) na unidade de processo de destilação industrial, permitindo a otimização do processo de produção. Foi construído um banco de dados espectrais (NIR) e das propriedades: densidade D20/4oC, destilação (PIE, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% e PFE), enxofre total, ponto de fulgor, ponto de congelamento e viscosidade a -20oC e a 40oC durante um período de 8 meses. A partir dos dados experimentais foram construídos modelos de inferência para as propriedades do querosene através dos métodos PLS (Partial Least Squares) e redes neurais. Inferências a partir de dados operacionais foram também elaboradas para comparação. As inferências construídas com os dados espectrais apresentaram resultados melhores que as obtidas com as variáveis operacionais. / This work aimed to obtain the characterization of Kerosene by Near Infrared Spectroscopy (NIR) with the intention to install a NIR analyzer at an industrial process of distillation, allowing optimization of the production process. A database of spectral data (NIR) was built and another with the properties: density D20/4oC, distillation (IBP, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and FBP), total sulfur, flash point, freezing point and viscosity at -20oC and 40oC for a period of 8 months. Models of inference to kerosene properties by the PLS (Partial Least Squares) and neural networks methods were built up from experimental data. Inferences from operational data were also compiled for comparison. As a conclusion of this work, inferences from spectroscopy data were better than those from operational data.
2

Caracterização do querosene através da espectroscopia de infravermelho próximo. / Characterization of kerosene by near infrared spectroscopy.

Valmir José Camolesi 23 April 2009 (has links)
Ensejou-se obter a caracterização do Querosene via espectroscopia de infravermelho próximo com o objetivo de se instalar um analisador NIR (Near InfraRed) na unidade de processo de destilação industrial, permitindo a otimização do processo de produção. Foi construído um banco de dados espectrais (NIR) e das propriedades: densidade D20/4oC, destilação (PIE, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% e PFE), enxofre total, ponto de fulgor, ponto de congelamento e viscosidade a -20oC e a 40oC durante um período de 8 meses. A partir dos dados experimentais foram construídos modelos de inferência para as propriedades do querosene através dos métodos PLS (Partial Least Squares) e redes neurais. Inferências a partir de dados operacionais foram também elaboradas para comparação. As inferências construídas com os dados espectrais apresentaram resultados melhores que as obtidas com as variáveis operacionais. / This work aimed to obtain the characterization of Kerosene by Near Infrared Spectroscopy (NIR) with the intention to install a NIR analyzer at an industrial process of distillation, allowing optimization of the production process. A database of spectral data (NIR) was built and another with the properties: density D20/4oC, distillation (IBP, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and FBP), total sulfur, flash point, freezing point and viscosity at -20oC and 40oC for a period of 8 months. Models of inference to kerosene properties by the PLS (Partial Least Squares) and neural networks methods were built up from experimental data. Inferences from operational data were also compiled for comparison. As a conclusion of this work, inferences from spectroscopy data were better than those from operational data.

Page generated in 0.0986 seconds