Spelling suggestions: "subject:"degative binomial distribution"" "subject:"begative binomial distribution""
51 |
Vybrané transformace náhodných veličin užívané v klasické lineární regresi / Selected random variables transformations used in classical linear regressionTejkal, Martin January 2017 (has links)
Klasická lineární regrese a z ní odvozené testy hypotéz jsou založeny na předpokladu normálního rozdělení a shodnosti rozptylu závislých proměnných. V případě že jsou předpoklady normality porušeny, obvykle se užívá transformací závisle proměnných. První část této práce se zabývá transformacemi stabilizujícími rozptyl. Značná pozornost je udělena náhodným veličinám s Poissonovým a negativně binomickým rozdělením, pro které jsou studovány zobecněné transformace stabilizující rozptyl obsahující parametry v argumentu navíc. Pro tyto parametry jsou stanoveny jejich optimální hodnoty. Cílem druhé části práce je provést srovnání transformací uvedených v první části a dalších často užívaných transformací. Srovnání je provedeno v rámci analýzy rozptylu testováním hypotézy shodnosti středních hodnot p nezávislých náhodných výběrů s pomocí F testu. V této části jsou nejprve studovány vlastnosti F testu za předpokladu shodných a neshodných rozptylů napříč výběry. Následně je provedeno srovnání silofunkcí F testu aplikovaného pro p výběrů z Poissonova rozdělení transformovanými odmocninovou, logaritmickou a Yeo Johnsnovou transformací a z negativně binomického rozdělení transformovaného argumentem hyperbolického sinu, logaritmickou a Yeo-Johnsnovou transformací.
|
52 |
Introduction to Probability TheoryChen, Yong-Yuan 25 May 2010 (has links)
In this paper, we first present the basic principles of set theory and combinatorial analysis which are the most useful tools in computing probabilities. Then, we show some important properties derived from axioms of probability. Conditional probabilities come into play not only when some partial information is available, but also as a tool to compute probabilities more easily, even when partial information is unavailable. Then, the concept of random variable and its some related properties are introduced. For univariate random variables, we introduce the basic properties of some common discrete and continuous distributions. The important properties of jointly distributed random variables are also considered. Some inequalities, the law of large numbers and the central limit theorem are discussed. Finally, we introduce additional topics the Poisson process.
|
Page generated in 0.1117 seconds