• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 16
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 18
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

STRUCTURAL INSIGHT INTO THE BIOGENESIS OF OUTER MEMBRANE PROTEINS IN PATHOGENIC NEISSERIA

Evan M Billings (18424239) 23 April 2024 (has links)
<p dir="ltr">The obligate human pathogen, <i>Neisseria gonorrhoeae </i>(Ngo), has continued to acquire widespread antibiotic resistance. Ngo is the causative agent of the sexually transmitted disease gonorrhea, and can cause additional complications such as endocarditis, septicemia, and infertility if left untreated. The Centers for Disease Control and Prevention (CDC) now recommends a treatment option of a single drug of last resort, ceftriaxone, leaving a need for novel therapeutics against this pathogen.</p><p dir="ltr">Like many bacterial pathogens, Ngo is Gram-negative consisting of both an inner membrane (IM) and outer membrane (OM). The transmembrane proteins in the IM have primarily an α-helical fold, while the transmembrane proteins in the OM have a β-barrel fold. These β-barrel outer membrane proteins (OMPs) have essential functions in regulating the homeostasis and nutrient acquisition of the cell, in addition to promoting virulence in pathogenic strains. These OMPs are folded and inserted into the outer membrane by the β-barrel assembly machinery (BAM) complex. In <i>E. coli,</i> BAM consists of five proteins: BamA, an OMP itself, and four lipoproteins, BamB, C, D, and E.</p><p dir="ltr">Here we present our work toward the structural characterization of BAM from Ngo (<i>Ng</i>BAM) using cryo-EM. Ngo lack a homolog of BamB and may function as a four component complex. To better understand the mechanism for how <i>Ng</i>BAM is able to mediate OMP biogenesis despite lacking a component that is critical in <i>E. coli</i>, we determined the cryo-EM structure of <i>Ng</i>BAM, which revealed several distinct features including that the barrel domain of BamA being observed in the inward-open conformation. We also investigated <i>Ng</i>BAM as a therapeutic target, by studying its interaction with a novel broad spectrum antibiotic darobactin. We first showed darobactin is effective against the laboratory strains of NgoFA19 and ATCC-49226. We also show it is effective against the human isolate WHOX, with a comparable MIC to ceftriaxone. To structurally characterize the mechanism of inhibition by darobactin, we used cryo-EM to determine the structures of <i>Ng</i>BAM bound to two darobactin compounds. In these structures, darobactin binding was accompanied by large conformational changes in <i>Ng</i>BamA. To further probe the effects of darobactin on the conformational plasticity of <i>Ng</i>BAM we performed experiments using double electron-electron resonance spectroscopy, which showed distance changes between the engineered site labels consistent with the conformational changes observed in our structural observation. In addition, narrowing of the peak distributions indicated that darobactin binding was reducing the overall conformational heterogeneity of the complex. Taken together, the work presented here contributes to the understanding of how <i>Ng</i>BAM functions in folding and inserting OMPs and provides a foundation for future structure based drug design of darobactin and other potential compounds.</p>
112

Structural And Functional Studies Of Neisserial Lactoferrin Binding Proteins

Ravi Yadav (11850101) 17 December 2021 (has links)
<p>Two species of <i>Neisseria</i>, <i>N. meningitidis</i> and <i>N. gonorrhoeae</i>, are obligate human pathogens that cause meningitis and gonorrhea, respectively. Although generally asymptomatic, <i>N. meningitidis</i> can cause invasive meningococcal disease with high mortality rate. Due to emerging antibiotic resistance strains of <i>N. gonorrhoeae</i>, the Centers for Disease Control and Prevention (CDC) have designated it as an urgent threat to public health. Therefore, immediate interventions are required for fight against these Neisserial pathogens. Iron is an essential nutrient for all bacteria, including <i>Neisseria</i>. However, free iron is scarce in human, therefore, <i>Neisseria</i> have evolved to acquire iron from host proteins. These iron acquisition systems are immunogenic and important for infection and are promising therapeutic targets.</p> <p> In the host, lactoferrin sequesters free iron and limits iron availability to pathogens. However, <i>Neisseria</i> have evolved machinery to hijack iron directly from lactoferrin itself. Lactoferrin binding proteins, LbpA and LbpB, are outer membrane proteins that together orchestrate the acquisition of iron from lactoferrin. Additionally, LbpB serves an additional role in providing protection against host cationic antimicrobial peptides and innate immune response. Despite studies aimed at deciphering the roles of LbpA and LbpB, the molecular mechanisms underpinning iron acquisition and immune protection remain unknown. Here, we investigated the role of the lactoferrin binding proteins in iron acquisition and protection against cationic antimicrobial peptides. We obtained three-dimensional structures of <i>Neisseria</i> LbpA and LbpB in complex with lactoferrin using cryo-electron microscopy and X-ray crystallography. These structures show that both LbpA and LbpB bind to C-lobe of lactoferrin, albeit at distinct sites. Structural analyses show that while lactoferrin maintains its iron-bound closed conformation in the LbpB-lactoferrin complex, it undergoes a large conformational change from an iron-bound closed to an iron-free open conformation upon binding to LbpA. This observation suggest that LbpA alone can trigger the extraction of iron from lactoferrin. Our studies also provide an explanation for LbpB’s preference towards holo-lactoferrin over apo-lactoferrin and LbpA’s inability to distinguish between holo- and apo-lactoferrin. Furthermore, using mutagenesis and binding studies, we show that anionic loops in the C-lobe of LbpB contribute to binding the cationic antimicrobial peptide lactoferricin. Solution scattering studies of the LbpB-lactoferricin complex showed that LbpB undergoes a small conformational change upon peptide binding.</p> Together, our studies provide structural insights into the role of the lactoferrin binding proteins in iron acquisition and evasion of the host immune defenses. Moreover, this work lays the foundation for structure-based design of therapeutics against <i>Neisseria</i> targeting the lactoferrin binding proteins.
113

Therapeutic Antibody Against Neisseria gonorrhoeae Lipooligosaccharide, a Phase-variable Virulence Factor

Chakraborti, Srinjoy 25 May 2017 (has links)
Neisseria gonorrhoeae (Ng) which causes gonorrhea has become multidrug-resistant, necessitating the development of novel therapeutics and vaccines. mAb 2C7 which targets an epitope within an important virulence factor, the lipooligosaccharide (LOS), is a candidate therapeutic mAb. Ninety-four percent of clinical isolates express the 2C7-epitope which is also a vaccine target. Ng expresses multiple LOS(s) due to phase-variation (pv) of LOS glycosyltransferase (lgt) genes. mAb 2C7 reactivity requires a lactose extension from the LOS core Heptose (Hep) II (i.e. lgtG ‘ON’ [G+]). Pv results in HepI with: two (2-), three (3-), four (4-), or five (5-) hexoses (Hex). How HepI glycans impact Ng infectivity and mAb 2C7 function are unknown and form the bases of this dissertation. Using isogenic mutants, I demonstrate that HepI LOS glycans modulate mAb 2C7 binding. mAb 2C7 causes complement (C’)-dependent bacteriolysis of three (2-Hex/G+, 4-Hex/G+, and 5-Hex/G+) of the HepI mutants in vitro. The 3-Hex/G+ mutant (resistant to C’-dependent bacteriolysis) is killed by neutrophils in the presence of mAb and C’. In mice, 2- and 3-Hex/G+ infections are significantly shorter than 4- and 5-Hex/G+ infections. A chimeric mAb 2C7 that hyperactivates C’, attenuates only 4- and 5-Hex/G+ infections. This study enhances understanding of the role of HepI LOS pv in gonococcal infections and shows that longer HepI glycans are necessary for prolonged infections in vivo. This is the first study that predicts in vitro efficacy of mAb 2C7 against all four targetable HepI glycans thereby strengthening the rationale for development of 2C7-epitope based vaccines and therapeutics.
114

Examination of Neisseria gonorrhoeae opacity protein expression during experimental murine genital tract infection /

Simms, Amy Nicole. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).

Page generated in 0.0484 seconds