• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 36
  • 13
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

C-fos, response to injury and local drug delivery in vascular models

Armstrong, Johanna January 1999 (has links)
No description available.
2

Einfluss von Pioglitazon auf das neointimale Volumen nach koronarer Stentimplantation bei Patienten ohne Diabetes mellitus - eine randomisierte, placebo-kontrollierte Doppelblindstudie

Rinker, Angelika. January 2008 (has links)
Ulm, Univ., Diss., 2008.
3

Einfluss des Chemokins CCL5 auf die arterielle Thrombose und Neointimabildung nach experimenteller Gefäßwandläsion / Influence of the chemokine CCL5 on arterial thrombosis and neointima formation following experimental arterial injury

Meier, Julia 13 July 2016 (has links)
Die Atherosklerose ist eine progressiv fortschreitende entzündliche Erkrankung der Gefäße. Dem Chemokin CCL5 kommt in der Modulation sowie der Progression eine entscheidende Rolle zu. In der vorliegenden Studie wurde der Einfluss der genetischen CCL5-Defizienz auf dem Boden einer Hypercholesterinämie nach Induktion einer experimentellen Gefäßwandläsion hinsichtlich der arteriellen Thrombose und Bildung einer Neointima untersucht. Diesbezüglich wurden Tiere mit dem doppelten Gen-Knockout für ApoE-/- und CCL5-/- (Versuchsgruppe) sowie Tiere mit dem einzelnen Gen-Knockout für ApoE-/- und CCL5+/+ (Kontrollgruppe) generiert. Im Experiment wurde das FeCl3-Modell zur Induktion einer arteriellen Gefäßwandläsion der A.carotis communis sin. verwendet, in deren Folge innerhalb weniger Minuten eine arterielle Thrombose verursacht wurde und die Bildung einer Neointima innerhalb von drei Wochen zur Folge hatte. In beiden Gruppen führte die Gefäßwandverletzung zu einer Thrombusbildung, ein Unterschied bedingt durch die CCL5-Defizienz konnte nach sieben Tagen nicht gezeigt werden. Hingegen konnte eine signifikante Reduktion der Neointima-Fläche sowie eine signifikant verringerte Lumenstenose in der ApoE-/- x CCL5-/--Gruppe (jeweils p<0,05) bei ähnlicher Media-Fläche mit einer signifikant reduzierten I/M-Ratio (p<0,05) ermittelt werden. Immunhistochemische Analysen zeigten eine signifikante Reduktion der CCR5+-Gesamtfläche und eine Steigerung der CCR1+-Neointima-Fläche in der ApoE-/- x CCL5-/--Gruppe (jeweils p<0,05) sowie einen signifikanten Anstieg der CD45+-Neointima-Fläche, der Mac-+Neointima-Fläche (p<0,05) und der Mac-2+-Media-Fläche und der Mac-2+-Gesamtfläche in der ApoE-/- x CCL5-/--Gruppe (jeweils p<0,05). Darüber hinaus konnte eine signifikante Steigerung des antiatherogen wirkenden Transskriptionsfaktors KLF4 in der KLF4+-Neointima-Fläche in der ApoE-/- x CCL5-/--Gruppe (p<0,05) gezeigt werden, sodass die Hypothese einer gegenseitigen Beeinflussung nahe liegt. Zusammenfassend führt die CCL5-Defizienz zu einer signifikant reduzierten Neointima-Fläche nach Induktion einer Gefäßwandläsion mit der Folge einer arteriellen Thrombose. Hämodynamische und Histologische Analysen ergaben jedoch keinen Hinweis dafür, dass dieser Unterschied auf Veränderungen in der Thrombusformation bedingt durch die CCL5- Defizienz beruht. Möglicherweise könnte der atheroprotektive Effekt der CCL5- Defizienz bedingt durch die Hochregulation des atheroprotektiven Transskriptionsfaktors KLF4 oder durch pleiotrope Effekte im Signalweg, aufgrund der verschiedenen Rezeptoren, vermittelt sein.
4

Die Bedeutung von Entzündung und reaktiven Sauerstoffspezies in der Intimahyperplasie / The role of inflammation and reactive oxygen species in intimal hyperplasia

Kamann, Stefanie January 2012 (has links)
Die Restenose stellt ein zentrales Problem der interventionellen Kardiologie dar und ist häufigste Komplikation nach perkutanen Angioplastieverfahren. Hauptursache dieser Wiederverengung des Gefäßes ist die Bildung einer Neointima durch die Proliferation transdifferenzierter vaskulärer glatter Muskelzellen und die Sekretion extrazellulärer Matrix. Die Entstehung reaktiver Sauerstoffspezies (ROS) und die Entzündungsreaktion nach der Gefäßverletzung werden als frühe, die Neointimabildung induzierende Prozesse diskutiert. Im Rahmen dieser Arbeit wurden mehrere Projekte bearbeitet, die Aufschluss über die während der Neointimabildung statt findenden Prozesse geben sollen. Mit Hilfe eines Verletzungsmodells der murinen Femoralarterie wurde der Einfluss der Entzündung und der ROS-Bildung auf die Neointimabildung in der Maus untersucht. Die Behandlung mit dem mitochondrialen Superoxiddismutase-Mimetikum MitoTEMPO verminderte die Bildung der Neointima besser, als die Behandlung mit dem globalen ROS-Fänger N-Acetylcystein. Die stärkste Hemmung der Neointimabildung wurde jedoch durch die Immunsuppression mit Rapamycin erreicht. Interferon-γ (INFγ) ist ein wichtiges Zytokin der Th1-Immunantwort, das in Folge der Gefäßverletzung freigesetzt wird und die proinflammatorischen Chemokine CXCL9 (MIG, Monokine Induced by INF), CXCL10 (IP-10, INF inducible Protein of 10 kDa) und CXCL11 (I-TAC, Interferon inducible T cell-Chemoattractant) induziert. CXCL9, CXCL10 und CXCL11 sind Liganden des CXC-Chemokinrezeptors 3 (CXCR3) und locken chemotaktisch CXCR3 positive Entzündungszellen zum Ort der Gefäßverletzung. Daher wurde die spezielle Bedeutung des Chemokins CXCL10 in der Restenose untersucht. Dazu wurden CXCL10-defiziente Mäuse dem Femoralisverletzungsmodell unterzogen und die Gefäße nach 14 Tagen morphometrisch und immunhistologisch untersucht. CXCL10-Defizienz führte in Mäusen zu einer verminderten Neointimabildung, die mit einer verringerten Inflammation, Apoptose und Proliferation im verletzten Gefäß korrelierte. Neben der Inflammation beeinflusst aber auch die Reendothelialisierung der verletzten Gefäßwand die Restenose. Interessanterweise war im Vergleich zu Wildtyp-Mäusen in den CXCL10-Knockout-Mäusen auch die Reendothelialisierung erheblich verbessert. Offensichtlich ist das CXCR3-Chemokinsystem also in völlig unterschiedliche biologische Prozesse involviert und beeinflusst nicht nur die Bildung der Neoimtima durch die Förderung der Entzündung, sondern auch die Unterdrückung der Reendothelialisierung der verletzten Gefäßwand. Tatsächlich wird der CXCR3 nicht nur auf Entzündungszellen, sondern auch auf Endothelzellen exprimiert. Zur separaten Untersuchung der Rolle des CXCR3 in der Inflammation und der Reendothelialisierung wurde im Rahmen dieser Arbeit damit begonnen konditionelle CXCR3-Knockout-Mäuse zu generieren, in denen der CXCR3 entweder in Entzündungszellen oder in Endothelzellen ausgeschaltet ist. Zum besseren Verständnis der molekularen Mechanismen, mit denen der CXCR3 seine Funktionen vermittelt, wurde zudem untersucht ob dieser mit anderen G-Protein-gekoppelten Rezeptoren (GPCR) interagiert. Die Analyse von Coimmunpräzipitaten deutet auf eine Homodimerisierung der beiden CXCR3 Splicevarianten CXCR3A und CXCR3B, sowie auf die Heterodimerbildung von CXCR3A und CXCR3B mit sich, sowie jeweils mit CCR2, CCR3, CCR5 und den Opioidrezeptoren MOR und KOR hin. Die getestete Methode des Fluoreszenz-Resonanz-Energietransfers (FRET) erwies sich jedoch als ungeeignet zur Untersuchung von CXCR3, da dieser in HEK293T-Zellen nicht korrekt transient exprimiert wurde. Insgesamt deuten die Ergebnisse dieser Arbeit darauf hin, dass das CXCR3-Chemokinsystem eine zentrale Rolle in unterschiedlichen, die Neointimabildung beeinflussenden Prozessen spielt. Damit könnten der CXCR3 und insbesondere das Chemokin CXCL10 interessante Zielmoleküle in der Entwicklung neuer verbesserter Therapien zur Verhinderung der Restenose darstellen. / Restenosis represents a central problem after coronary angioplasty procedures and is caused by intimal hyperplasia, also called neointima, as a result of transdifferentiation, proliferation of vascular smooth muscle cells and secretion of extracellular matrix. Formation of reactive oxygen species (ROS) and inflammation after vascular injury caused by angioplasty are discussed as early inducers of neointima formation. In several projects the processes causing the development of intimal hyperplasia were investigated. First of all, the impact of inflammation and ROS in neointima formation was investigated using the mouse femoral injury model. The mitochondrial superoxide dismutase mimetic mitoTEMPO could reduce neointima formation better than the global ROS scavenger N-acetylcystein. However, the strongest reduction of neointima formation was achieved by the treatment with the immunosuppressant rapamycin. Interferon-γ(INFγ) is a major cytokine of the Th1 immune response. It is released as a result of vessel injury and induces the proinflammatory chemokines CXCL9 (MIG, Monokine Induced by INF), CXCL10 (IP-10, INF inducible Protein of 10 kDa) and CXCL11 (I-TAC, Interferon inducible T-cell-Chemoattractant), which are ligands of the CXC chemokine receptor 3 (CXCR3) and by this chemotactically recruit CXCR3 positive cells to the site of vessel injury. In this work the special role of CXCL10 in restenosis was investigated. Therefore, CXCL10 decient mice underwent the mouse femoral injury model. The vessels were analysed morphometrically and immunohistologically 14 days after injury. CXCL10 deciency lead to decreased neointima formation that correlated with a reduced recruitment of inflammatory cells as well as diminished numbers of apoptotic and proliferating cells at the site of vessel injury. In addition to inflammation the reconstitution of the endothelium has also impact on the development of restenosis. Interestingly reendothelialisation was strongly improved in CXCL10 decient mice compared to wildtype mice. Obviously the CXCR3 chemokine system is involved in different biological prosesses and impairs neointima formation on one hand by the advancement of inflammation and on the other hand by the suppression of reendothelialisation. In fact the CXCR3 is not only expressed on inflammatory cells but also on endothelial cells. To investigate the role of CXCR3 in inflammation and reendothelialisation separatly the generation of conditional CXCR3 knockout mice with a CXCR3 knockout in T-cells or endothelial cells was started in an additional project. For a better understanding of the molecular mechanisms on which the CXCR3 mediates its biological functions the protein-protein interactions of the CXCR3 with other G-protein coupled recteptors (GPCR) was analysed. Coimmunoprecipitation showed homodimerization of the CXCR3 splice variants CXCR3A and CXCR3B, as well as heterodimerization of CXCR3A and CXCR3B with each other and with the chemokine receptors CXCR4, CCR2, CCR3, CCR5 and the opioid receptors MOR and KOR. The additional tested Fluorecence resonance energy transfer (FRET) method proved to be not suitable to measure interactions of CXCR3, since this receptor could not be expressed correctly on the cell surface after transient transfection. To summarise, the results indicate that the CXCR3 chemokine system plays a central role in different processes that mediate neointima formation. Thus, the CXCR3 and especially the chemokine CXCL10 could be interesting therapeutic targets in the development of new or improved treatments to reduce the risk of restenosis.
5

IVOCT imaging artifacts of coronary stents

Elahi, Sahar 16 September 2014 (has links)
Coronary stent placement is a routine treatment of coronary artery disease, the leading cause of death worldwide. Intravascular Optical Coherence Tomography (IVOCT) is a superior imaging assessment technique in coronary stenting. To characterize IVOCT artifacts, phantom blood vessels were constructed and metallic and bioabsorable coronary stents were deployed with and without phantom neointima. High resolution Micro-CT images of the stent strut were recorded as a gold standard and utilized to create a three-dimensional representation of a strut that was imported into computer optical simulations. Simulated IVOCT images were computed that include the IVOCT catheter, light reflection from stent struts with varying neointimal thickness and scattering in the vessel lumen. The simulation results along with IVOCT images of the phantom vessels were utilized to elucidate the mechanisms underlying the “sunflower effect”, bending of stent struts toward the imaging catheter and “merry-go-round” effect, variable apparent strut size of metallic stents. Atomic force microscopy was used to examine surface properties of metallic and bioabsorbale stents, revealing sources of the distinctive appearance of bioabsorable stents in IVOCT images. The model formed a basis to develop a correction algorithm to remove stent artifacts in clinical IVOCT images. / text
6

Mitochondrial Ca2+/Calmodulin-dependent kinase ii (CaMKII) regulates smooth muscle cell migration and neointimal formation via mitochondrial Ca2+ uptake and mobility

Nguyen, Emily Kim 01 May 2019 (has links)
No description available.
7

Functions of TRF2: From Telomere Protection to DNA Damage Signaling and Vascular Remodeling

Khan, Sheik Jamaludin 18 June 2008 (has links)
TTAGGG repeat factor 2 (TRF2) is a protein that plays an important role in capping telomere ends from DNA damage responses. Telomere DNA consists of double strand repeats of the TTAGGG sequence ending with a 3'single-stranded overhang of the guanine strand (the G-strand overhang). TRF2 protects telomeres from being recognized as double-stranded breaks. It is thought that this protection is performed through the formation of T-loop structures and recruitment of proteins into a complex called shelterin. The exact mechanism of T-loop formation is unknown. I show with in vitro biochemical studies that TRF2 specifically interacts with telomeric ss/ds DNA junctions and binding is sensitive to the sequence of the G-strand overhang and double-stranded DNA sequence at the junction. Binding assays with TRF2 truncation mutants suggest that TRF2 interacts with both the double-stranded DNA through the C-terminal DNA binding domain and the G-strand overhang through the N-terminus. Mobility shifts and atomic force microscopy with truncation mutants bound to telomeric DNA also show that a previously uncharacterized "linker" region within TRF2 is involved in DNA-specific TRF2 oligomerization. From these observations, I suggest that TRF2 forms protective loops by oligomerizing through both a previously characterized dimerization domain and the linker region. I propose that loop formation involving the telomere ends is accomplished through direct interactions between TRF2 and the G-strand overhang. In addition to DNA protection, a new role has emerged for TRF2 in sensing DNA damage. TRF2 can be phosphorylated within its dimerization domain by ATM and recruited to DNA damage foci in cells. The inhibition of TRF2 function alone has been shown to induce senescence and apoptosis in vascular endothelial cells. Since the common stimuli for a senescence phenotype is activation of a DNA damage response, I studied the relationship between DNA damage and TRF2 phosphorylation. Ex-vivo characterization of DNA damage-induced changes in vascular smooth muscle cells (VSMC) was undertaken. VSMC treated with H202 induced an increase in reactive oxygen species (ROS), and 8-oxo-guanine accumulation resulting in cell cycle arrest, chromatin condensation and a senescent phenotype. Interestingly phosphorylated TRF2 and ATM were also up regulated. Balloon injury was used to test the connection between phosphorylated TRF2 and senescence during vascular remodeling in rat arteries. Vascular remodeling as judged by neointima formation was associated with accumulation of 8-oxo-guanine, DNA damage signaling, including phosphorylated TRF2, an increase in cell cycle inhibitors and senescence. These events were exaggerated in aged animals and are consistent with a role in telomere dysfunction, and age related diseases.
8

Role of Caspase 13 Activation in Carotid artery Balloon Injury

Lin, Chun-yao 07 September 2009 (has links)
ABSTRACT Endothelial dysfunction/apoptosis is critical to the development of neointima hyperplasia. Our pilot study identified a novel member of the caspase subfamily, caspase 13 (CASP 13), which is induced by oxidized low density lipoprotein (ox-LDL) in endothelial cells, but not in vascular smooth muscle cells. It remains controversial whether CASP 13 is a human or bovine gene. In this study, we collected four human brachial artery segments during arterioveinous fistula graft removal surgeries. By western blot and quantitative RT-PCR analysis, CASP13 expression was elevated at the anastomosis of brachial arteries from patients receiving hemodialysis. Rat carotid artery balloon model is widely used as in vivo atherosclerosis model for studies on neointima formation and especially vascular smooth muscle proliferation. However, most of the balloon injury studies terminated on the 14th day to sacrifice the animals for histological studies. In this study, we employed the ultrasonic device to record the hemodynamic changes in rat carotid artery at different time intervals after balloon injury. The pre-operative mean left carotid artery internal diameter and blood flow of Sprauge Dawley rats was 0.6 ¡Ó 0.07 mm and 28.75 ¡Ó 4.45 cm/sec, respectively. After balloon dilatation, the mean internal diameter of left carotid artery elevated to 0.77 ¡Ó 0.09 mm and 0.71 ¡Ó 0.08 mm on day 7 and day 14, respectively. Besides, the mean blood flow velocity also increased to 47.6 ¡Ó 9.2 cm/sec and 33.4 ¡Ó 10.8 cm/sec on day 7 and day 14, respectively. However, the left carotid artery blood flow velocity returned to 24 ¡Ó 3.5 cm/sec on day 21. The CASP 13 protein expression was found elevated in the balloon injury sites and mainly localized in the endothelial cells. In summary, CASP 13 is detected in endothelial cells in both human and rat atherosclerosis models and may constitute a novel molecular target for vascular diseases.
9

The Endothelial Response to Injury: Defining the Role of Epidermal Growth Factor-like Domain 7 and Endothelial Protective Strategies

Badiwala, Mitesh Vallabh 07 January 2014 (has links)
Background: Currently, the optimal long-term therapy for end stage heart failure is heart transplantation. Cardiac allograft vasculopathy contributes to a significant number of deaths following transplantation. This vasculopathy is related to early endothelial injury sustained at the time of organ transplantation and to persistent endothelial injury as a result of cytotoxic immunosuppression, as well as chronic rejection. Epidermal growth factor-like domain 7 (Egfl7), is expressed in endothelial cells upon arterial injury and may have a role in maintaining vascular endothelial integrity and regeneration following injury. Similarly, novel pharmacologic agents such as Bosentan, an endothelin-1 antagonist, and Cilostazol, a phosphodiesterase 3 inhibitor, have been demonstrated to attenuate calcineurin inhibition induced endothelial dysfunction and neointimal hyperplasia, respectively. We hypothesized that, 1) Egfl7 will attenuate endothelial activation, cell adhesion molecule expression and neutrophil adhesion following simulated ischemia-reperfusion injury or exposure to calcineurin inhibition and that, 2) Bosentan and Cilostazol will inhibit neointimal hyperplasia following endothelial injury in a mouse model of vascular injury. Methods: Human coronary artery endothelial cells were subjected to hypoxia-reoxygenation injury or the calcineurin inhibitors Cyclosporine A and Tacrolimus to examine the effects of Egfl7 on these injury mechanisms. Cell adhesion molecule expression, neutrophil adhesion to endothelial cells, and NF-&kappa;B activation were measured. Cell adhesion molecule and Egfl7 expression were also examined in a mouse model of neointimal. This model was used to examine the effects of Bosentan and Cilostazol on neointimal hyperplasia. Results: Egfl7 had potent anti-inflammatory properties including inhibition of NF-&kappa;B pathway activation, ICAM-1 expression and neutrophil adhesion to injured endothelium. Within vessels exhibiting neointimal hyperplasia, Egfl7 was expressed in regions lacking ICAM-1 expression. Both cilostazol and bosentan attenuated neointimal hyperplasia in isolation as well as during co-treatment with CNI therapies. Conclusions: Egfl7 is an endothelial protective signaling protein with anti-inflammatory properties effective against simulated ischemia-reperfusion injury and calcineurin inhibition mediated injury. Cilostazol and Bosentan are pharmacologic strategies demonstrating efficacy against the development of neointimal hyperplasia. These observations provide a novel therapeutic target and strategies that may be relevant to endothelial protection and prevention of cardiac allograft vasculopathy following heart transplantation.
10

The Endothelial Response to Injury: Defining the Role of Epidermal Growth Factor-like Domain 7 and Endothelial Protective Strategies

Badiwala, Mitesh Vallabh 07 January 2014 (has links)
Background: Currently, the optimal long-term therapy for end stage heart failure is heart transplantation. Cardiac allograft vasculopathy contributes to a significant number of deaths following transplantation. This vasculopathy is related to early endothelial injury sustained at the time of organ transplantation and to persistent endothelial injury as a result of cytotoxic immunosuppression, as well as chronic rejection. Epidermal growth factor-like domain 7 (Egfl7), is expressed in endothelial cells upon arterial injury and may have a role in maintaining vascular endothelial integrity and regeneration following injury. Similarly, novel pharmacologic agents such as Bosentan, an endothelin-1 antagonist, and Cilostazol, a phosphodiesterase 3 inhibitor, have been demonstrated to attenuate calcineurin inhibition induced endothelial dysfunction and neointimal hyperplasia, respectively. We hypothesized that, 1) Egfl7 will attenuate endothelial activation, cell adhesion molecule expression and neutrophil adhesion following simulated ischemia-reperfusion injury or exposure to calcineurin inhibition and that, 2) Bosentan and Cilostazol will inhibit neointimal hyperplasia following endothelial injury in a mouse model of vascular injury. Methods: Human coronary artery endothelial cells were subjected to hypoxia-reoxygenation injury or the calcineurin inhibitors Cyclosporine A and Tacrolimus to examine the effects of Egfl7 on these injury mechanisms. Cell adhesion molecule expression, neutrophil adhesion to endothelial cells, and NF-&kappa;B activation were measured. Cell adhesion molecule and Egfl7 expression were also examined in a mouse model of neointimal. This model was used to examine the effects of Bosentan and Cilostazol on neointimal hyperplasia. Results: Egfl7 had potent anti-inflammatory properties including inhibition of NF-&kappa;B pathway activation, ICAM-1 expression and neutrophil adhesion to injured endothelium. Within vessels exhibiting neointimal hyperplasia, Egfl7 was expressed in regions lacking ICAM-1 expression. Both cilostazol and bosentan attenuated neointimal hyperplasia in isolation as well as during co-treatment with CNI therapies. Conclusions: Egfl7 is an endothelial protective signaling protein with anti-inflammatory properties effective against simulated ischemia-reperfusion injury and calcineurin inhibition mediated injury. Cilostazol and Bosentan are pharmacologic strategies demonstrating efficacy against the development of neointimal hyperplasia. These observations provide a novel therapeutic target and strategies that may be relevant to endothelial protection and prevention of cardiac allograft vasculopathy following heart transplantation.

Page generated in 0.048 seconds