• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 52
  • 18
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 98
  • 98
  • 98
  • 48
  • 48
  • 43
  • 31
  • 23
  • 22
  • 19
  • 18
  • 18
  • 16
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Photodynamic activity of a glucoconjugated Silicon(IV) phthalocyanine on human colon adenocarcinoma.

January 2009 (has links)
Chan, Man Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 111-126). / Abstract also in Chinese. / Examination Committee List --- p.ii / Declaration --- p.iii / Acknowledgements --- p.iv / 摘要(Abstract in Chinese) --- p.vi / Abstract --- p.viii / List of Abbreviations --- p.x / List of Figures and Tables --- p.xii / Table of Content --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background of photodynamic therapy (PDT) --- p.2 / Chapter 1.1.1 --- History of PDT --- p.2 / Chapter 1.1.2 --- Photochemistry --- p.3 / Chapter 1.1.3 --- Principal stages of PDT --- p.5 / Chapter 1.1.4 --- Light sources of PDT --- p.6 / Chapter 1.2 --- Anti-tumor effect of PDT --- p.8 / Chapter 1.2.1 --- Mode of cell death --- p.8 / Chapter 1.2.2 --- PDT-induced anti-tumor immunity --- p.9 / Chapter 1.3 --- Clinical applications of PDT --- p.11 / Chapter 1.3.1 --- Photofrin® --- p.11 / Chapter 1.3.2 --- Clinical applications of PDT --- p.13 / Chapter 1.3.3 --- Challenges of PDT for clinical applications --- p.15 / Chapter 1.4 --- The development of new photosensitizers --- p.16 / Chapter 1.4.1 --- Targeted PDT --- p.16 / Chapter 1.4.2 --- Phthalocyanine --- p.18 / Chapter 1.5 --- Objective of my study --- p.21 / Chapter Chapter 2 --- Materials and Methods --- p.23 / Chapter 2.1 --- Synthesis of glucosylated silicon(IV) phthalocyanine (SiPcGlu) --- p.24 / Chapter 2.2 --- In vitro studies --- p.24 / Chapter 2.2.1 --- Cell line and culture conditions --- p.24 / Chapter 2.2.2 --- Photodynamic treatment --- p.25 / Chapter 2.2.3 --- Cell viability assay --- p.27 / Chapter 2.2.4 --- Light dose effect on the photocytotoxicity of SiPcGlu-PDT --- p.27 / Chapter 2.2.5 --- Determination of reactive oxygen species (ROS) production by SiPcGlu-PDT --- p.29 / Chapter 2.2.6 --- Effect of antioxidants on the photocytotoxicity of SiPcGlu-PDT --- p.29 / Chapter 2.2.7 --- Determination of ROS production after SiPcGlu-PDT --- p.30 / Chapter 2.2.8 --- Glucose competitive assay --- p.30 / Chapter 2.2.9 --- Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay --- p.30 / Chapter 2.2.10 --- DNA fragmentation analysis by gel electrophoresis --- p.31 / Chapter 2.2.11 --- Annexin-V & propidium iodide staining assay --- p.32 / Chapter 2.2.12 --- Subcellular localization studies --- p.33 / Chapter 2.2.13 --- Detection of mitochondrial superoxide production --- p.34 / Chapter 2.2.14 --- Assessment of mitochondrial membrane potential --- p.34 / Chapter 2.2.15 --- Caspase-3 activity assay --- p.35 / Chapter 2.2.16 --- "Western blot analyses for cytochrome c, caspase-3, PARP and glucose-regulated protein 78 (GRP78)" --- p.36 / Chapter 2.2.17 --- Ca2+ release from endoplasmic reticulum (ER) --- p.37 / Chapter 2.3 --- In vivo studies --- p.37 / Chapter 2.3.1 --- HT29 tumor-bearing nude mice model --- p.37 / Chapter 2.3.2 --- In vivo photodynamic treatment --- p.39 / Chapter 2.3.3 --- Biodistribution of SiPcGlu --- p.39 / Chapter 2.3.4 --- Assay for plasma enzyme activities --- p.40 / Chapter 2.4 --- Statistical analysis --- p.41 / Chapter Chapter 3 --- Results --- p.42 / Chapter 3.1 --- In vitro studies --- p.43 / Chapter 3.1.1 --- SiPcGlu-PDT induced cytotoxicity on HT29 cells --- p.43 / Chapter 3.1.2 --- Light dose effect on cytotoxicity by SiPcGlu-PDT --- p.46 / Chapter 3.1.3 --- SiPcGlu-PDT induced ROS production --- p.48 / Chapter 3.1.4 --- SiPcGlu-PDT induced cell death through Type I and II photoreactions --- p.48 / Chapter 3.1.5 --- ROS production after SiPcGlu-PDT --- p.51 / Chapter 3.1.6 --- Glucose competitive Assay --- p.55 / Chapter 3.1.7 --- SiPcGlu-PDT induced apoptosis in HT29 cells --- p.57 / Chapter 3.1.8 --- Subcellular localization of SiPcGlu --- p.61 / Chapter 3.1.9 --- SiPcGlu-PDT induced mitochondrial changes --- p.66 / Chapter 3.1.10 --- SiPcGlu-PDT induced caspase activation --- p.68 / Chapter 3.1.11 --- SiPcGlu-PDT increased expression of ER chaperone GRP78 --- p.72 / Chapter 3.1.12 --- SiPcGlu-PDT induced release of Ca2+ from ER --- p.72 / Chapter 3.2 --- In vivo studies --- p.75 / Chapter 3.2.1 --- In vivo photodynamic activities --- p.75 / Chapter 3.2.2 --- Tissue distribution of SiPcGlu --- p.77 / Chapter 3.2.3 --- Analysis of intrinsic toxicity --- p.77 / Chapter Chapter 4 --- Discussion --- p.80 / Chapter 4.1 --- Physical Properties of SiPcGlu --- p.81 / Chapter 4.2 --- In vitro studies --- p.82 / Chapter 4.2.1 --- SiPcGlu-PDT exhibits a high potency in killing HT29 cells --- p.82 / Chapter 4.2.2 --- ROS production is responsible for the cytotoxic effect of SiPcGlu-PDT --- p.83 / Chapter 4.2.3 --- SiPcGlu-PDT induced apoptosis in HT29 cells --- p.85 / Chapter 4.2.4 --- SiPcGlu is localized in various membranous organelles --- p.87 / Chapter 4.2.5 --- SiPcGlu-PDT induced mitochondria-mediated apoptosis --- p.89 / Chapter 4.2.6 --- SiPcGlu-PDT induced ER stress --- p.93 / Chapter 4.3 --- In vivo studies --- p.96 / Chapter 4.3.1 --- SiPcGlu failed to target to tumor tissues --- p.96 / Chapter 4.3.2 --- SiPcGlu-PDT induced retardation in tumor growth --- p.99 / Chapter 4.3.3 --- SiPcGlu is a safe photosensitizer for PDT --- p.101 / Chapter Chapter 5 --- Conclusion and Future Perspectives --- p.103 / Chapter 5.1 --- Conclusion --- p.104 / Chapter 5.2 --- Future Perspectives --- p.106 / Chapter 5.2.1 --- In vitro studies --- p.106 / Chapter 5.2.1.1 --- Lysosomal pathway to cell death --- p.106 / Chapter 5.2.2 --- In vivo studies --- p.107 / Chapter 5.2.2.1 --- Pharmacokinetic studies --- p.107 / Chapter 5.2.2.2 --- Eradication of HT29 tumor by repeated dose of SiPcGlu --- p.108 / Chapter 5.2.2.3 --- SiPcGlu-PDT-induced anti-tumor immunity --- p.108 / Chapter 5.2.2.4 --- Enhancement of tumor selectivity by conjugating with biomolecules --- p.109 / References --- p.110
62

Biopanning, identification and application of peptides targeting the vasculature of orthotopic colorectal cancer based on in vivo phage display technology. / 基于体内噬菌体展示技术、靶向结肠直肠癌血管的多肽的筛选、鉴定及应用 / CUHK electronic theses & dissertations collection / Ji yu ti nei shi jun ti zhan shi ji shu, ba xiang jie chang zhi chang ai xue guan de duo tai de shai xuan, jian ding ji ying yong

January 2010 (has links)
Colorectal cancer (CRC) is one of the most common malignancies worldwide. However, adjuvant chemotherapeutic agents exhibit poor accumulation in the tumor mass and frequently result in serious side effects due to nonspecific damage to normal organs. Therefore, the development of more selective anticancer drugs with targeted delivery to tumor sites is the current trend in cancer therapies. Among these sites, tumor neovasculature is an attractive target for anticancer agents. It is because tumor growth is largely limited by blood supply which is dependent on the extent of angiogenesis in the tumor. / Experimental analysis suggested that TCP-1 phage and synthetic TCP-1 peptide specifically homed to colorectal cancer tissues and co-localized with the tumor vasculature. Moreover, TCP-1 peptide also recognized the vasculature of human colorectal cancer specimens. Subsequently, the homing abilities of TCP-1 phage were extensively tested in other cancer models. Results showed that TCP-1 peptide could also target the vasculature of orthotopic gastric cancer induced by human colon cancer cell line (MKN45) in BALB/c nude mice. Meanwhile, TCP-1 phage exhibited binding activity to colorectal cancer cells such as colon 26 and SW1116. TCP-1 peptide could carry a pro-apoptotic peptide into these cells and markedly enhanced its pro-apoptotic action. / In summary, we have used the phage display technology to isolate two unique peptides TCP-1 and TCP-2, which targeted the vasculature of orthotopic colorectal cancer and also recognized the vasculature of human colorectal cancer. Moreover, they could deliver fluorescein or pro-apoptotic peptide only to the tumor vasculature but not to other normal tissues, for imaging detection and targeted therapy. In conclusion, both TCP-1 and TCP-2 may have significant clinical applications as carriers in diagnostic imaging and ligand-mediated targeted therapy for human colorectal cancer. / Similarly, TCP-2 phage or its peptide also targeted specifically the orthotopic colorectal cancer, and co-localized with the tumor vasculature in mice. Meanwhile, TCP-2 peptide recognized the vasculature of human colorectal cancer specimens. FITC-labeled TCP-2 peptide could also be used to detect cancer tissues in tumor-bearing mice. / To identify specific ligands targeting the tumor neovasculature, in vivo phage display technology has been extensively used. Several dozens of peptides homing to normal or diseased vasculature have been identified through this technology. However, these peptides target mainly the tumors growing at distant sites but not at the primary organ, thus limiting their clinical application. To obtain specific peptides targeting the neovasculature of colorectal cancer growing in situ, we established an orthotopic colorectal cancer model in normal BALB/c mice by using syngeneic colon cancer cells (colon 26). Subsequently, in vivo phage display technology was utilized to isolate peptides which specifically recognized the vasculature of the cancer. Four peptides (termed TCP-1, 2, 3, 4) were enriched more than once after four-round selections. Further investigation disclosed that TCP-1 and TCP-2 phages had relatively stronger binding abilities to cancer tissues among the four phage clones. They were chosen for further study. / We further demonstrated that TCP-1 could serve as a carrier for image detection and drug delivery. FITC-labeled TCP-1 could specifically produce a strong fluorescence signal in the tumors after intravenous injection into the orthotopic tumor-bearing mice. Moreover TCP-1, when conjugated with a pro-apoptotic peptide, could also specifically induce apoptosis of tumor vasculature in vivo. / Li, Zhijie. / Adviser: Cho Chiltin. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 194-221). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
63

A prospective longitudinal observational study on the effectiveness of Chinese herbal medicine in advanced cancer patients.

January 2010 (has links)
Wong, Ka Yee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 177-189). / Abstracts in English and Chinese; includes Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vii / List of Appendices --- p.xi / List of Tables --- p.xii / List of Figures --- p.xiv / Abbreviations --- p.xvi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General Introduction --- p.1 / Chapter 1.2 --- Background to the study --- p.2 / Chapter 1.2.1 --- Epidemiology of cancer --- p.2 / Chapter 1.2.1.1 --- Incidence and mortality in the World --- p.2 / Chapter 1.2.1.2 --- Incidence and mortality in Hong Kong --- p.4 / Chapter 1.2.2 --- Prevalence of Traditional Chinese Medicine (TCM) --- p.5 / Chapter 1.2.3 --- Prevalence of Traditional Chinese Medicine (TCM) in cancer --- p.6 / Chapter 1.2.4 --- Development of TCM in Hong Kong --- p.7 / Chapter 1.3 --- Theoretical rationale of the study --- p.8 / Chapter 1.4 --- Significance of the study --- p.11 / Chapter Chapter 2 --- Literature Review --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- The concept of Advanced Cancer --- p.13 / Chapter 2.2.1 --- Pathology of Advanced Cancer --- p.14 / Chapter 2.2.1.1 --- Metastatic Cancer --- p.14 / Chapter 2.2.2 --- Sign and Symptoms of Advanced Cancer --- p.19 / Chapter 2.2.3 --- Diagnosis of Advanced Cancer --- p.19 / Chapter 2.2.4 --- Current Treatment for Advanced Cancer --- p.21 / Chapter 2.2.5 --- Limitation of Current Treatments --- p.24 / Chapter 2.3 --- Diagnosis and Treatment by TCM of Advanced Cancer --- p.26 / Chapter 2.3.1 --- (Advanced) Cancer from the TCM perspectives --- p.26 / Chapter 2.3.2 --- Diagnosis by TCM of Advanced Cancer --- p.27 / Chapter 2.3.3 --- Treatment by TCM of Advanced Cancer --- p.28 / Chapter 2.4 --- Current Evidences about the Clinical Effectiveness of TCM on Cancer Patients --- p.29 / Chapter 2.5 --- The concept of Health-related Quality of Life (HRQOL) --- p.35 / Chapter 2.5.1 --- The importance of HRQOL to cancer patients --- p.35 / Chapter 2.5.2 --- HRQOL instruments --- p.37 / Chapter 2.5.2.1 --- EORTC QLQ-C30 --- p.38 / Chapter 2.5.2.2 --- SF-36 --- p.39 / Chapter 2.6 --- Summary of Literature Review --- p.40 / Chapter 2.7 --- The research questions --- p.41 / Chapter 2.8 --- Research Hypotheses --- p.42 / Chapter 2.9 --- The design of TCM protocol --- p.42 / Chapter Chapter 3 --- Methodology --- p.45 / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Protocol --- p.45 / Chapter 3.2.1 --- Study Design --- p.46 / Chapter 3.2.2 --- Selection of Participants --- p.46 / Chapter 3.2.2.1 --- Inclusion criteria --- p.48 / Chapter 3.2.2.2 --- Exclusion criteria --- p.49 / Chapter 3.2.3 --- Sample size calculation --- p.50 / Chapter 3.2.4 --- Setting --- p.51 / Chapter 3.2.5 --- Interventions --- p.51 / Chapter 3.2.5.1 --- Treatment --- p.51 / Chapter 3.2.5.2 --- Medication and dose/dosage --- p.52 / Chapter 3.2.5.3 --- Treatment Assignment --- p.55 / Chapter 3.2.5.4 --- Concurrent Medications --- p.56 / Chapter 3.2.6 --- Procedure and Methods --- p.56 / Chapter 3.2.6.1 --- Informed Consent --- p.56 / Chapter 3.2.6.2 --- Documentation --- p.57 / Chapter 3.2.6.3 --- Assessment Procedure --- p.57 / Chapter 3.2.7 --- Outcome Measurements --- p.62 / Chapter 3.2.7.1 --- Survey Questionnaire --- p.62 / Chapter 3.2.7.2 --- Quality of life (QOL) instruments --- p.62 / Chapter 3.2.7.3 --- Global Ratings --- p.64 / Chapter 3.2.7.4 --- Physical Examination and Laboratory tests --- p.65 / Chapter 3.2.8 --- Safety Considerations --- p.66 / Chapter 3.2.8.1 --- Adverse Events (AE) --- p.66 / Chapter 3.2.8.2 --- Serious Adverse Event (SAE) --- p.66 / Chapter 3.2.8.3 --- Causality Assessment --- p.67 / Chapter 3.2.9 --- Ethical consideration --- p.68 / Chapter 3.2.10 --- Data Collection --- p.69 / Chapter 3.3 --- Data analysis --- p.69 / Chapter 3.4 --- Expected Outcomes of Study --- p.71 / Chapter Chapter 4 --- Results --- p.72 / Chapter 4.1 --- Study Progress --- p.72 / Chapter 4.2 --- The Participants --- p.72 / Chapter 4.3 --- Clinical characteristics and Socio-demographics of Participants --- p.75 / Chapter 4.4 --- Main Outcome - Quality of Life --- p.78 / Chapter 4.4.1 --- QLQ-C30 --- p.79 / Chapter 4.4.1.1 --- Scoring and Transforming of items into scales --- p.79 / Chapter 4.4.1.2 --- Changes of Individual Scale at Different Visits --- p.80 / Chapter 4.4.1.3 --- Clinical significance of Scales --- p.98 / Chapter 4.4.2 --- SF-36 --- p.104 / Chapter 4.4.2.1 --- Scoring and Transforming of items into scales --- p.104 / Chapter 4.4.2.2 --- Changes of Individual Scale at Different Visits --- p.104 / Chapter 4.4.2.3 --- SF-36 Summary Scales --- p.113 / Chapter 4.4.3 --- Correlation of QLQ-C30 and SF-36 --- p.115 / Chapter 4.5 --- Measurement of Physical examination --- p.117 / Chapter 4.5.1 --- Body Weight --- p.117 / Chapter 4.6 --- Measurement of Laboratory Blood tests --- p.118 / Chapter 4.6.1 --- "Comparison of CBC, RFT, LFT and LD" --- p.118 / Chapter 4.6.2 --- Tumor Markers --- p.120 / Chapter 4.7 --- Adverse Events and Serious Adverse Events --- p.121 / Chapter 4.8 --- Global Ratings --- p.123 / Chapter 4.8.1 --- Global Rating 1 - Severity of Disease --- p.123 / Chapter 4.8.2 --- Global Rating 2 - Global Disease Status --- p.124 / Chapter 4.8.2.1 --- Change in Global Disease Status --- p.125 / Chapter 4.8.2.2 --- Agreement between RCMP and clinician --- p.125 / Chapter 4.8.2.3 --- Patients' perception after treatment --- p.126 / Chapter 4.9 --- Distribution of TCM patterns and Chinese herbal medicines --- p.127 / Chapter 4.10 --- Survival Rate --- p.132 / Chapter 4.11 --- Conclusion --- p.133 / Chapter Chapter 5 --- Discussion --- p.135 / Chapter 5.1 --- Conclusion on findings --- p.135 / Chapter 5.2 --- Baseline profile of participants --- p.137 / Chapter 5.3 --- Feasibility of TCM on advanced cancer patients --- p.139 / Chapter 5.3.1 --- Recruitment of Participants --- p.139 / Chapter 5.3.2 --- Compliance of participants to the study schedule --- p.140 / Chapter 5.4 --- Health-related Quality of Life --- p.142 / Chapter 5.5 --- Safety of TCM --- p.149 / Chapter 5.6 --- Chinese medicine practitioner vs Western medicine doctor --- p.150 / Chapter 5.7 --- TCM pattern differentiation and treatment --- p.151 / Chapter 5.8 --- Implication of study --- p.154 / Chapter 5.8.1 --- Clinical implication --- p.154 / Chapter 5.8.2 --- Policy implication --- p.154 / Chapter 5.9 --- Limitations of the study --- p.155 / Chapter 5.10 --- Recommendations for further studies --- p.157 / Chapter 5.11 --- Overall Conclusion --- p.158 / Appendices --- p.160 / References --- p.177
64

Molecular mechanism(s) of prostate cancer progression : potential of therapeutic modalities

Shukeir, Nicholas. January 2009 (has links)
Prostate cancer remains one of the most commonly diagnosed cancers in men and is a leading cause of cancer death. While great success has been achieved at curing early stage prostate cancer, limited success has been obtained when treating late-stage hormone independent prostate cancer. This is due to the increased propensity for skeletal and non-skeletal metastases. Thus development of novel effective therapeutic modalities against late stage prostate cancer is of critical importance. / Towards these objectives, I have focused my attention on the role of prostate secretory protein (PSP-94) which is expressed in normal individuals and in patients with early stage prostate cancer. Using our well established in vivo models of prostate cancer, I have evaluated the ability of PSP-94 and its amino acids 31-45 required (PCK3145) to decrease tumor growth and skeletal metastases in vivo and evaluated the potential mechanism(s) associated with PCK3145 anti-cancer actions. / Prostatic cancer can also develop as a result of epigenetic activation of tumor promoting genes. To evaluate the role of methylation in prostate cancer, late stage prostate cancer cells were treated with the universal methylating agent S-adenosylmethionine (SAM) and an anti-sense oligonucleotide directed against MBD2 (AS). Scrambled oligonucleotide was included as a control (S). Both SAM and MBD2-AS resulted in inhibition in uPA, MMP-2 and VEGF production leading to decreased tumor cell invasive capacity. However, SAM and MBD2-AS were not able to either further repress partially methylated genes (GSTP1) or reactivate already methylated genes (AR). Furthermore, SAM and MBD2-AS treatment resulted in significant reduction in tumor growth in vivo . Immunohistochemical and RT-PCR analyses carried out on SAM and MBD2-AS tumors revealed decreased protein and mRNA expression of uPA and MMP-2 which was partially due to increased methylation of the respective promoters even after 10 weeks post in vitro treatment as analyzed by bisulfate sequencing. In addition decreased levels of angiogenesis and tumor survival markers were observed. / Collectively, these studies are aimed at the development of novel reliable approached to diagnose and treat advanced, hormone refractory prostate cancer to reduce tumor associated morbidity and mortality.
65

Basal-like breast cancers : characterization and therapeutic approaches

Khalil, Tayma. January 2008 (has links)
Background. Both basal-like subtype and BRCA1-related breast cancers tend to have a poor overall prognosis and lack of effective treatments. Given that the lung cancer drug gefitinib and the leukemia drug dasatinib inhibit proteins also belonging to the molecular signature of this subtype, we and others hypothesized that they might be useful therapies for those two breast cancer subgroups. / Methods. Eight breast cancer cell lines were characterized by immunohistochemistry and western blotting and were treated with both drugs. Response was measured by using the sulphorhodamine B (SRB) assay. / Results. Two out of six basal-like cell lines were sensitive to gefitinib and five of six to dasatinib. BRCA1-related breast cancers were also responsive to dasatinib (three out of four). Moreover, EGFR and caveolin-1 act as markers for dasatinib sensitivity, but do not appear to be the primary targets of this drug. The presence of SRC but not ABL is necessary to achieve a response to dasatinib. / Conclusion. Dasatinib is more effective in the treatment of basal-like breast cancers than gefitinib and acts by inhibiting SRC and other molecules that are yet to be determined.
66

The protective effects of Ganoderma extracts from the endocrine disruption of p,p'-DDE on breast cancer cell model.

January 2009 (has links)
Qin, Jing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 162-218). / Abstract also in Chinese. / Acknowledgment --- p.i / Abstract --- p.ii / 摘要 --- p.iv / Table of Content --- p.vi / List of Figures --- p.x / List of Tables --- p.xv / Abbreviations --- p.xvii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Ganoderma spp --- p.1 / Chapter 1.1.1 --- Introduction of Ganoderma spp --- p.1 / Chapter 1.1.2 --- Bioactivities of Ganoderma spp --- p.3 / Chapter 1.1.3 --- Endocrine system and breast cancer --- p.11 / Chapter 1.1.3.1 --- Estrogen --- p.11 / Chapter 1.1.3.2 --- Estrogen receptors --- p.12 / Chapter 1.1.3.3 --- Estrogen responsive genes --- p.15 / Chapter 1.1.3.3.1 --- pS2 --- p.15 / Chapter 1.1.3.3.2 --- Progesterone receptor --- p.18 / Chapter 1.1.3.4 --- Androgen --- p.21 / Chapter 1.1.3.5 --- Androgen receptor --- p.23 / Chapter 1.1.3.6 --- Androgen responsive gene --- p.24 / Chapter 1.1.3.6.1 --- Transmembrane prostate androgen-induced RNA --- p.24 / Chapter 1.1.3.6.2 --- Uridine diphosphate glucose dehydrogenase --- p.26 / Chapter 1.1.3.7 --- Breast cancer --- p.26 / Chapter 1.2 --- "Endocrine Disruption of p,p '-DDE" --- p.28 / Chapter 1.2.1 --- Introduction of p´ةp '-DDE --- p.28 / Chapter 1.2.2 --- "p,p '-DDE in environments" --- p.29 / Chapter 1.2.3 --- "p,p '-DDE in human body" --- p.32 / Chapter 1.2.4 --- "p,p '-DDE and reproductive system" --- p.33 / Chapter 1.2.5 --- Endocrine disruptor --- p.35 / Chapter 1.2.6 --- "Action mechanism of p,p '-DDE on endocrine system" --- p.37 / Chapter 1.2.7 --- Apoptosis --- p.39 / Chapter 1.3 --- Food therapy against endocrine disruption --- p.41 / Chapter 1.3.1 --- Food therapy and functional food --- p.41 / Chapter 1.3.2 --- Ganoderma as a Functional food --- p.47 / Chapter 1.3.3 --- Cancer prevention by dietary agents --- p.47 / Chapter 1.3.4 --- Hormone therapy --- p.48 / Chapter 1.3.5 --- Hormone-related properties of Ganoderma spp --- p.50 / Chapter 1.4 --- The aim of the study --- p.51 / Chapter Chapter 2 --- Materials and Methods --- p.52 / Chapter 2.1 --- Ganoderma samples --- p.52 / Chapter 2.2 --- Artificial cultivation of Ganoderma spp --- p.54 / Chapter 2.3 --- Molecular identification of Ganoderma spp --- p.55 / Chapter 2.3.1 --- Extraction of genomic DNA --- p.55 / Chapter 2.3.2 --- Gene-specific polymerase chain reaction (PCR) --- p.56 / Chapter 2.3.3 --- Gel electrophoresis --- p.56 / Chapter 2.3.4 --- Purification of PCR amplified product for sequencing --- p.57 / Chapter 2.3.5 --- Cycle-sequencing --- p.57 / Chapter 2.3.6 --- Sequencing --- p.58 / Chapter 2.3.7 --- Sequence analysis --- p.58 / Chapter 2.4 --- Chemical analyses of Ganoderma spp --- p.59 / Chapter 2.4.1 --- Polysaccharide preparations --- p.59 / Chapter 2.4.2 --- Terpene profile --- p.60 / Chapter 2.4.3 --- Fatty acid profile --- p.60 / Chapter 2.5 --- Anti-oxidation activities --- p.61 / Chapter 2.5.1 --- Superoxide radical scavenging assay --- p.61 / Chapter 2.5.2 --- DPPH radical scavenging assay --- p.62 / Chapter 2.6 --- Anti-proliferation effect on human breast cancer cells --- p.62 / Chapter 2.7 --- Hormone-like effects --- p.63 / Chapter 2.7.1 --- E-screen test --- p.63 / Chapter 2.7.2 --- In vitro estrogen receptors (ERs) competitor binding assays --- p.64 / Chapter 2.7.3 --- "Recombinant yeast cell based ER-, AR- and PGR-responsible promoter assays" --- p.65 / Chapter 2.7.3.1 --- Recombinant yeasts --- p.65 / Chapter 2.7.3.2 --- Growth medium for recombinant yeasts --- p.66 / Chapter 2.7.3.3 --- "ER, AR and PGR assays" --- p.67 / Chapter 2.7.3.4 --- β-Galactosidase assay --- p.67 / Chapter 2.7.4 --- Real time PCR --- p.68 / Chapter 2.8 --- Flow cytometry --- p.71 / Chapter 2.9 --- Comet assay --- p.71 / Chapter 2.10 --- DNA microarray --- p.73 / Chapter 2.10.1 --- Total RNA isolation --- p.73 / Chapter 2.10.2 --- cDNA synthesis --- p.73 / Chapter 2.10.3 --- Preparation of labelled cDNA --- p.74 / Chapter 2.10.4 --- cDNA purification --- p.74 / Chapter 2.10.5 --- Oligo GEArray hybridization --- p.75 / Chapter 2.10.6 --- Chemiluminescent detection --- p.76 / Chapter 2.10.7 --- Data analysis --- p.77 / Chapter Chapter 3 --- Results --- p.78 / Chapter 3.1 --- Analysis of Ganderma spp --- p.78 / Chapter 3.1.1 --- Mycelia and fruiting bodies --- p.78 / Chapter 3.1.2 --- Identification of Ganoderma spp --- p.79 / Chapter 3.1.3 --- Chemical properties of samples --- p.80 / Chapter 3.1.4 --- Anti-oxidation activities --- p.90 / Chapter 3.1.5 --- Anti-proliferation effect on human breast cancer cells --- p.90 / Chapter 3.1.6 --- Hormone-like bioactivities --- p.93 / Chapter 3.1.6.1 --- E-screen test --- p.93 / Chapter 3.1.6.2 --- In vitro estrogen receptors (ERs) competitor binding assays --- p.94 / Chapter 3.1.6.3 --- "Recombinant yeast cell-based ER-, AR- and PGR-responsible promoter assays" --- p.95 / Chapter 3.1.6.4 --- ER- and AR-pathway gene expression by real time PCR --- p.97 / Chapter 3.2 --- "Action mechanism of p,p' -DDE" --- p.99 / Chapter 3.2.1 --- E-screen --- p.99 / Chapter 3.2.2 --- In vitro estrogen receptors (ERs) competitor binding assays --- p.101 / Chapter 3.2.3 --- Recombinant yeast cell based ER- and AR-responsible promoter assays --- p.103 / Chapter 3.2.4 --- ER- and AR-pathway gene expression by real time PCR --- p.106 / Chapter 3.3 --- Ganoderma tsugae mycelia extract against p.p' -DDE --- p.109 / Chapter 3.3.1 --- E-screen test --- p.109 / Chapter 3.3.2 --- ER- and AR-pathway gene expression by real time PCR --- p.110 / Chapter 3.3.3 --- Analysis of cell cycle --- p.112 / Chapter 3.3.4 --- Analysis of DNA damage --- p.114 / Chapter 3.3.5 --- Analysis of sub-G1 peak --- p.117 / Chapter 3.3.6 --- DNA damage and apoptosis relative gene expression by real time PCR --- p.120 / Chapter 3.3.7 --- DNA microarray --- p.121 / Chapter Chapter 4 --- Discussion --- p.131 / Chapter 4.1 --- Analysis of Ganoderma spp --- p.131 / Chapter 4.2 --- Effects of p.p´ة-DDE --- p.144 / Chapter 4.3 --- Protective effects of G. tsugae against p.p' -DDE --- p.151 / Chapter 4.4 --- Further investigation --- p.159 / Chapter 4.5 --- Conclusion --- p.160 / References --- p.162
67

Basal-like breast cancers : characterization and therapeutic approaches

Khalil, Tayma. January 2008 (has links)
No description available.
68

Molecular mechanism(s) of prostate cancer progression : potential of therapeutic modalities

Shukeir, Nicholas. January 2009 (has links)
No description available.
69

Genome-wide identification of target genes to vitamin D and analysis of the molecular mechanisms underlying its therapeutic properties

Tavera Mendoza, Luz Elisa. January 2007 (has links)
No description available.
70

In vitro evaluation of potential drug combination in cancer therapy: demethylcantharidin and platinum drug.

January 2007 (has links)
Ng, Po Yan. / Thesis submitted in: November 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 109-120). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / 摘要 --- p.iii / Table of Contents --- p.iv / List of Figures --- p.viii / List of Tables --- p.xi / List of Abbreviation --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- A General Introduction to the Development and Clinical Activities of Platinum Drugs --- p.1 / Chapter 1.1.1 --- Platinum Drugs used in a Clinical Setting --- p.4 / Chapter 1.1.2 --- Platinum Drugs under Clinical Trials --- p.5 / Chapter 1.1.3 --- Platinum Compounds with Dual Mechanisms --- p.7 / Chapter 1.2 --- Platinum Drug Antitumor Mechanism --- p.9 / Chapter 1.3 --- Limitations of Platinum Drugs --- p.12 / Chapter 1.3.1 --- Toxicity --- p.12 / Chapter 1.3.2 --- Drug Resistance or Cross Resistance --- p.15 / Chapter 1.3.2.1 --- Reduced Drug Accumulation or Increased Drug Efflux --- p.16 / Chapter 1.3.2.2 --- Drug Inactivation --- p.18 / Chapter 1.3.2.3 --- Enhanced DNA Repair --- p.19 / Chapter 1.4 --- Why Combinational Therapy? --- p.21 / Chapter 1.4.1 --- Antimetabolites --- p.20 / Chapter 1.4.2 --- Topoisomerase Inhibitors --- p.22 / Chapter 1.4.3 --- Tubulin-Active Antimitotic Agents --- p.24 / Chapter 1.4.4 --- Demethylcantharidin as a potential candidate for drug combination --- p.28 / Chapter 1.5 --- Study Objectives --- p.31 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Cell Lines --- p.33 / Chapter 2.2 --- Cancer Cell Preparation / Chapter 2.2.1 --- Chemicals and Reagents --- p.33 / Chapter 2.2.2 --- Cell Culture Practice --- p.34 / Chapter 2.2.2.1 --- Subcultures --- p.35 / Chapter 2.2.2.2 --- Cryopreservation --- p.37 / Chapter 2.2.2.3 --- Thawing Cryopreservated Cells --- p.38 / Chapter 2.2.3 --- Development of Drug-Resistant Cell Lines --- p.39 / Chapter 2.3 --- Growth Inhibition Assay / Chapter 2.3.1 --- Evaluation of Cytotoxicity in vitro --- p.40 / Chapter 2.3.2 --- Drug Pretreatment --- p.43 / Chapter 2.3.3 --- Drug Pre-sensitization with Concurrent Treatment --- p.44 / Chapter 2.4 --- Calculations for Drug Combinations --- p.46 / Chapter 2.5 --- Statistical Analysis --- p.49 / Chapter Chapter 3 --- Results and Discussions / Chapter 3.1 --- In vitro Cytotoxicity and Evaluation of Drug Resistance --- p.50 / Chapter 3.2 --- Role of Leaving Ligand in a Platinum Complex --- p.58 / Chapter 3.3 --- Priority in Selecting the Most Effective Drug Combination --- p.66 / Chapter 3.4 --- Drug Combination Studies / Chapter 3.4.1 --- Drug Combination Prescreening --- p.68 / Chapter 3.4.1.1 --- Comparison of the effectiveness of the three Drug Combinations --- p.72 / Chapter 3.4.1.2 --- Rationale for Drug Combination Studies presented in Section 3.4.2 & 3.4.3 --- p.73 / Chapter 3.4.2 --- Drug Pre-sensitization Studies in Colorectal Cancer Cell Lines --- p.74 / Chapter 3.4.2.1 --- Comparison of Drug Pre-sensitization Treatment in Sensitive Colorectal Cancer Cell Lines --- p.84 / Chapter 3.4.2.2 --- Comparison of Drug Pre-sensitization Treatment in Sensitive and Oxaliplatin Resistant HCT116 Colorectal Cancer Cell Lines --- p.87 / Chapter 3.4.3 --- Drug Pre-sensitization Studies in Liver Cancer Cell Lines --- p.89 / Chapter 3.4.3.1 --- Comparison of Drug Pre-sensitization Treatment in Sensitive Liver Cancer Cell Lines --- p.99 / Chapter 3.4.3.2 --- Comparison of Drug Pre-sensitization Treatment in Sensitive and Cisplatin Resistant SK-Hepl Liver Cancer Cell Line --- p.101 / Chapter 3.5 --- Possible Explanation to the Observed Drug Combination Effect --- p.103 / Chapter 3.6 --- General Protocols for Drug Combinations --- p.105 / Chapter Chapter 4 --- Conclusions / Reference --- p.109 / Appendices --- p.121 / Chapter I a. --- "Raw Data of Pre-screening for HCT116 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.122 / Chapter I b. --- "Raw Data of Pre-screening for HCT116 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.123 / Chapter II a. --- "Raw Data of Pre-screening for SK-Hepl (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.124 / Chapter II b. --- "Raw Data of Pre-screening for SK-Hepl ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.125 / Chapter III a. i) --- "Isobolograms for HCT116 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.126 / Chapter III a. ii) --- "Raw Data for HCT116 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.127 / Chapter III b. i) --- "Isobolograms for HCT116 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.128 / Chapter III b. ii) --- "Raw Data for HCT116 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.129 / Chapter IV a. i) --- "Isobolograms for HCT1160xaR (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.130 / Chapter IV a. ii) --- "Raw Data for HCT1160xaR (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.131 / Chapter IV b. i) --- "Isobolograms for HCT1160xaR ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.132 / Chapter IV b. ii) --- "Raw Data for HCT1160xaR ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.133 / Chapter V a. i) --- "Isobolograms for HT29 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.134 / Chapter V a. ii) --- "Raw Data for HT29 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.135 / Chapter V b. i) --- "Isobolograms for HT29 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.136 / Chapter V b. ii) --- "Raw Data for HT29 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.137 / Chapter VI a. i) --- Isobolograms for Hep G2 (Cisplatin and [Pt(DMC)(NH3)2]) --- p.138 / Chapter VI a. ii) --- Raw Data for Hep G2 (Cisplatin and [Pt(DMC)(NH3)2]) --- p.139 / Chapter VI b. i) --- "Isobolograms for Hep G2 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.140 / Chapter VI b. ii) --- "Raw Data for Hep G2 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.141 / Chapter VII a. i) --- "isobolograms for SK Hep 1 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.142 / Chapter VII a. ii) --- "Raw Data for SK Hep 1 (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.143 / Chapter VII b.i) --- "Isobolograms for SK Hep 1 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.144 / Chapter VII b. ii) --- "Raw Data for SK Hep 1 ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.145 / Chapter VIII a. i) --- "Isobolograms for SK Hep ICisR (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.146 / Chapter VIII a. ii) --- "Raw Data for SK Hep ICisR (Cisplatin, [Pt(DMC)(NH3)2] and Pt(DMC)(NH2CH3)2])" --- p.147 / Chapter VIII b. i) --- "Isobolograms for SK Hep ICisR ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.148 / Chapter VIII b. ii) --- "Raw Data for SK Hep ICisR ([Pt(DMC)(R,R-DACH)] and Oxaliplatin)" --- p.149

Page generated in 0.0935 seconds