• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 8
  • 2
  • Tagged with
  • 59
  • 59
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Novel embryonic stem cell-infused scaffold for peripheral neuropathy repair

Papreck, Justin Ryan 05 June 2008 (has links)
Peripheral nerve injury in adults often leads to permanent functional loss with or without pain. Traumatic injury or surgery, metabolic injury (diabetic neuropathy), and drug toxicity can lead to neuropathies and all negatively impact the quality of life1-8. Damage to the nervous system is often permanent since neurons in the brain and periphery are post-mitotic and have limited regenerative capacity. Nerve repair involves axon regeneration, a complex and incompletely understood process with repair potential declining with age9-15. The research and design discussed involves the induction of endogenous repair mechanisms of the peripheral nerve using embryonic stem cells, alginate hydrogel, and the guided support of a biomaterial scaffold composed of PGS. Three different populations of cells are discussed: human embryonic stem cells, neural progenitor cells derived from human embryonic stem cells16, and primary rat bone marrow stromal cells. This study was innovative in that it was the first attempt for use of an elastomeric biomaterial scaffold in an injury model for the purpose of clinical application. This research is significant as it has direct clinical relevance in that it incorporates both functional and neuropathic recovery of patients affected by peripheral nerve damage.
52

Clinical electrophysiological studies of the ulnar and radial nerves in the dog Klinisch electrofysiologisch onderzoek aan de nervus ulnaris en radialis bij de hond (met een samenvatting in het nederlands) /

Nes, Jan Jules van, January 1900 (has links)
Thesis (doctoral)--Rijksuniversiteit te Utrecht, 1985. / "Stellingen": leaves inserted. Vita. Includes bibliographical references.
53

Separate and Somewhat Equal: Racial Disparity in the Prescription of Peripheral Nerve Block and Pharmacotherapy to Treat Postoperative Breast Cancer Pain

Farrell, Nsenga Magnus January 2022 (has links)
Existing research on health disparities in breast cancer is heavily focused on outcomes for poor or low-income women. Little is known about the experience of privately insured Black breast cancer patients that have moderate to high SES. As a result, the present study was conducted to learn more about their experiences. It examines differences in physician prescribing of two breast cancer pain treatments, peripheral nerve block (PNB) and opioids, for Black and White women with like levels of health insurance coverage and socioeconomic status (SES). Three specific questions are addressed: 1. What, if any, race-based disparities exist in usage of PNBs at time of total mastectomy? 2. What, if any, race based disparities exist in the prescription of opioids for postoperative pain following total mastectomy? 3. What, if any, changes have occurred in the frequency of orders placed for PNBs and prescription opioids over time, to treat postoperative pain resulting from mastectomy? A cross-sectional designed was used relying on an existing national dataset, Optum Clinformatics Data Mart. The study period was January 1, 2012, through December 31, 2019. Study results revealed that while moderate to higher SES Black women have equitable access to PNB and opioids - a kind of shield from long established physician bias against Black women – this protection is quite porous. They still do not have open and ready access to PNB as a more advanced pain treatment. Nor do they have assurance that they are protected from the overprescribing of opioids, a class of drugs with serious and well-known safety risks. Therefore, on the surface, it appears that equity and racial inclusion are hallmarks of physician prescribing of postoperative breast cancer pain treatment. However, further interrogation reveals that ‘separate and somewhat equal’ is a more accurate characterization of their prescribing practices, based both on race and SES.
54

Regulation of Clustered Protocadherin Expression in the Murine Central and Peripheral Nervous Systems

Nwakeze, Chiamaka January 2023 (has links)
The combinatorial code of cPcdh isoforms creates a diversified cell-surface molecular signature for cell-cell recognition in neural networks. This genetic architecture, combined with a regulated expression pattern and trans-homophilic binding properties, provides insights into cell specialization and signaling. Anomalies in cPcdhs, which include genetic mutations, epigenetic modifications, structural variations, and altered gene expression profiles, are associated with several neurological, neuropsychiatric, and systemic conditions, highlighting the importance of cPcdh investigations. This study focuses on the transcriptional regulation of the Pcdhα gene cluster. Each neuron displays a specific Pcdhα alternate exon repertoire, necessitating an understanding of the transcriptional dynamics. Using the SK-N-SH human neuroblastoma cell line and methodologies such as cRNA-seq and Start-Seq, these dynamics are examined. The application of CRISPR-Cas9 gene editing and a dCas9-VPR gain-of-function assay in the HEK293T cell line reveals the role of as-lncRNA and its interaction with DNA methylation within the Pcdhα gene cluster. This study identifies the role of noncoding as-lncRNA in RNA transcription and provides information on CTCF binding and Pcdhα promoter activation. The research also examines the gastrointestinal domain, as cPcdhs are linked to various diseases. Shifting focus from the canonical realm of the CNS, the research embarks on a preliminary yet pivotal exploration of the gastrointestinal domain. As cPcdhs intersect with a plethora of diseases, an incisive understanding of their expression could yield revelations into tissue susceptibilities with potential disease ramifications. Employing a novel single-domain antibody technique coupled with immunohistochemistry, the endeavor casts a precise lens into the gastrointestinal expression dynamics of Pcdhα and Pcdhγ. These insights not only fortify the understanding of cPcdh within neural structures but also beckon a deeper inquiry into their multifaceted biological roles.
55

Identification of altered Ras signaling and intermediate filament hyperphosphorylation in giant axonal neuropathy

Martin, Kyle B. January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Giant axonal neuropathy (GAN) is a rare genetic disease that causes progressive damage to the nervous system. Neurons in GAN patients develop an abnormal organization of cytoskeletal proteins called intermediate filaments (IFs), which normally provide strength and support for the overall cell structure. The irregular IF structure in GAN patient neurons leads to a progressive loss of motor skills in children and subsequent death in adolescence. GAN is caused by reduced levels of the gigaxonin (Giga) protein. Giga functions to control the degradation of other cellular proteins, and the loss of Giga in GAN cells results in significantly elevated levels of the galectin-1 (Gal-1) protein. Gal-1 stabilizes the active form of the Ras signaling protein, which functions as a molecular switch to regulate the phosphorylation and subsequent organization of IFs. The connection between these pathways led us to propose that Giga regulates IF phosphorylation and structure by modulating Ras signaling through the degradation of Gal-1. Using GAN patient cells, we demonstrated that restoring Giga reduced Gal-1 protein levels, decreased IF phosphorylation, and reestablished normal IF organization. Similar effects of reduced IF phosphorylation and improved IF structure were also obtained in GAN cells by directly decreasing the protein levels of either Gal-1, or downstream Ras signaling proteins. Taken together, these results demonstrate that the loss of Giga induces Gal-1 mediated activation of Ras signaling, thereby leading to the increased IF phosphorylation and abnormal IF structure observed in GAN cells. Identification of aberrant Ras signaling is significant because it is the first to specify a mechanism by which the loss of Giga leads to the development of GAN and provides targets for novel drug therapies for the treatment of this currently immedicable genetic disease.
56

The role of high mobility group box 1 and toll like receptor 4 in a rodent model of neuropathic pain

Feldman, Polina 20 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Neuropathic pain is a serious health problem that greatly impairs quality of life. The International Association for the Study of Pain (IASP) defines neuropathic pain as ‘pain arising as a direct consequence of a lesion or disease affecting the nervous system’. It is important to note that with neuropathy the chronic pain is not a symptom of injury, but rather the pain is itself a disease process. Novel interactions between the nervous system and elements of the immune system may be key facets to a chronic disease state. One of particular note is the recent finding supporting an interaction between an immune response protein high mobility group box 1 (HMGB1) and Toll like receptor 4 (TLR4). HMGB1 is an endogenous ligand for TLR4 that influences the induction of cytokines in many non-neuronal cells. After tissue damage or injury, HMGB1 may function as a neuromodulatory cytokine and influence the production of pro-nociceptive mediators altering the state of sensory neurons. Very little is known about the HMGB1-TLR4 interaction in sensory neurons and whether chronic changes in endogenous HMGB1 signaling influence the establishment of neuropathic pain. This thesis aims to determine whether a physiologically relevant neuroimmune interaction involving endogenous HMGB1 and TLR4 in the dorsal root ganglia is altered following a tibial nerve injury model of neuropathic pain. I hypothesized that sensitization of sensory neurons following a peripheral nerve injury is dependent on endogenous HMGB1 and TLR4. The studies presented here demonstrate that HMGB1 undergoes subcellular redistribution from the nucleus to the cytoplasm in primary afferent neurons following peripheral nerve injury. Further, the presence of extracellular HMGB1 may directly contribute to peripheral sensitization and injury-induced tactile hyperalgesia. Though thought to be important as a pivotal receptor for HMGB1 activation, neuronal protein expression of TLR4 does not appear to influence the effects of HMGB1-dependent behavioral changes following peripheral nerve injury. Taken together, these findings suggest that extracellular HMGB1 may serve as an important endogenous cytokine that contributes to ongoing pain hypersensitivity in a rodent model of neuropathic pain.
57

The function of ASCL1 in pregnancy-induced maternal liver growth

Lee, Joonyong January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The maternal liver shows marked growth during pregnancy to accommodate the development and metabolic needs of the placenta and fetus. Previous study has shown that the maternal liver grows proportionally to the increase in body weight during gestation by hyperplasia and hypertrophy of hepatocytes. As the maternal liver is enlarged, the transcript level of Ascl1, a transcription factor essential to progenitor cells of the central nervous system and peripheral nervous system, is highly upregulated. The aims of the study were to (1) identify hepatic Ascl1-expressing cells, and (2) study the functions of Ascl1 in maternal liver during pregnancy. In situ hybridization shows that most cell types (parenchymal, nonparenchymal, and mesothelial cells) express Ascl1 mRNA in maternal livers during gestation and in male regenerating livers. Notably, hepatic mesothelial cells abundantly express Ascl1 during pregnancy and liver regeneration. Inducible ablation of Ascl1 gene during pregnancy results in maternal liver enlargement, litter size reduction, and fetal growth retardation. In addition, maternal hepatocytes deficient in Ascl1 gene lack majority of their cytosols and exhibit β-catenin nuclear translocation, while maintaining their cellular boundary and identity. In summary, in both maternal liver during pregnancy and regenerating liver, the expression of Ascl1 is induced in most cell types. Mesothelial cells are potential origin of Ascl1-expressing cells. Ascl1 gene is essential for the progression of normal pregnancy
58

Developing a Neural Signal Processor Using the Extended Analog Computer

Soliman, Muller Mark 21 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Neural signal processing to decode neural activity has been an active research area in the last few decades. The next generation of advanced multi-electrode neuroprosthetic devices aim to detect a multiplicity of channels from multiple electrodes, making the relatively time-critical processing problem massively parallel and pushing the computational demands beyond the limits of current embedded digital signal processing (DSP) techniques. To overcome these limitations, a new hybrid computational technique was explored, the Extended Analog Computer (EAC). The EAC is a digitally confgurable analog computer that takes advantage of the intrinsic ability of manifolds to solve partial diferential equations (PDEs). They are extremely fast, require little power, and have great potential for mobile computing applications. In this thesis, the EAC architecture and the mechanism of the formation of potential/current manifolds was derived and analyzed to capture its theoretical mode of operation. A new mode of operation, resistance mode, was developed and a method was devised to sample temporal data and allow their use on the EAC. The method was validated by demonstration of the device solving linear diferential equations and linear functions, and implementing arbitrary finite impulse response (FIR) and infinite impulse response (IIR) linear flters. These results were compared to conventional DSP results. A practical application to the neural computing task was further demonstrated by implementing a matched filter with the EAC simulator and the physical prototype to detect single fiber action potential from multiunit data streams derived from recorded raw electroneurograms. Exclusion error (type 1 error) and inclusion error (type 2 error) were calculated to evaluate the detection rate of the matched filter implemented on the EAC. The detection rates were found to be statistically equivalent to that from DSP simulations with exclusion and inclusion errors at 0% and 1%, respectively.
59

Effects of electrical stimulation and testosterone on regeneration-associated gene expression and functional recovery in a rat model of sciatic nerve crush injury

Meadows, Rena Marie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Although peripheral motoneurons are phenotypically endowed with robust regenerative capacity, functional recovery is often suboptimal following peripheral nerve injury (PNI). Research to date indicates that the greatest success in achieving full functional recovery will require the use of a combinatorial approach that can simultaneously target different aspects of the post-injury response. In general, the concept of a combinatorial approach to neural repair has been established in the scientific literature but has yet to be successfully applied in the clinical situation. Emerging evidence from animal studies supports the use of electrical stimulation (ES) and testosterone as one type of combinatorial treatment after crush injury to the facial nerve (CN VII). With the facial nerve injury model, we have previously demonstrated that ES and testosterone target different stages of the regeneration process and enhance functional recovery after facial nerve crush injury. What is currently unknown, but critical to determine, is the impact of a combinatorial treatment strategy of ES and testosterone on functional recovery after crush injury to the sciatic nerve, a mixed sensory and motor spinal nerve which is one of the most serious PNI clinical problems. The results of the present study indicate that either treatment alone or in combination positively impact motor recovery. With regard to molecular effects,single and combinatorial treatments differentially alter the expression of regeneration-associated genes following sciatic nerve crush injury relative to facial nerve injury. Thus, our data indicate that not all injuries equally respond to treatment. Furthermore, the results support the importance of treatment strategy development in an injury-dependent manner and based upon the functional characteristics of spinal vs. cranial nerves.

Page generated in 0.0402 seconds