Spelling suggestions: "subject:"bnetwork based intrusion detection."" "subject:"conetwork based intrusion detection.""
1 |
Detecting and characterising malicious executable payloadsAndersson, Stig January 2009 (has links)
Buffer overflow vulnerabilities continue to prevail and the sophistication of attacks targeting these vulnerabilities is continuously increasing. As a successful attack of this type has the potential to completely compromise the integrity of the targeted host, early detection is vital. This thesis examines generic approaches for detecting executable payload attacks, without prior knowledge of the implementation of the attack, in such a way that new and previously unseen attacks are detectable. Executable payloads are analysed in detail for attacks targeting the Linux and Windows operating systems executing on an Intel IA-32 architecture. The execution flow of attack payloads are analysed and a generic model of execution is examined. A novel classification scheme for executable attack payloads is presented which allows for characterisation of executable payloads and facilitates vulnerability and threat assessments, and intrusion detection capability assessments for intrusion detection systems. An intrusion detection capability assessment may be utilised to determine whether or not a deployed system is able to detect a specific attack and to identify requirements for intrusion detection functionality for the development of new detection methods. Two novel detection methods are presented capable of detecting new and previously unseen executable attack payloads. The detection methods are capable of identifying and enumerating the executable payload’s interactions with the operating system on the targeted host at the time of compromise. The detection methods are further validated using real world data including executable payload attacks.
|
2 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
3 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
4 |
A one-class NIDS for SDN-based SCADA systems / Um NIDS baseado em OCC para sistemas SCADA baseados em SDNSilva, Eduardo Germano da January 2007 (has links)
Sistemas elétricos possuem grande influência no desenvolvimento econômico mundial. Dada a importância da energia elétrica para nossa sociedade, os sistemas elétricos frequentemente são alvos de intrusões pela rede causadas pelas mais diversas motivações. Para minimizar ou até mesmo mitigar os efeitos de intrusões pela rede, estão sendo propostos mecanismos que aumentam o nível de segurança dos sistemas elétricos, como novos protocolos de comunicação e normas de padronização. Além disso, os sistemas elétricos estão passando por um intenso processo de modernização, tornando-os altamente dependentes de sistemas de rede responsáveis por monitorar e gerenciar componentes elétricos. Estes, então denominados Smart Grids, compreendem subsistemas de geração, transmissão, e distribuição elétrica, que são monitorados e gerenciados por sistemas de controle e aquisição de dados (SCADA). Nesta dissertação de mestrado, investigamos e discutimos a aplicabilidade e os benefícios da adoção de Redes Definidas por Software (SDN) para auxiliar o desenvolvimento da próxima geração de sistemas SCADA. Propomos também um sistema de detecção de intrusões (IDS) que utiliza técnicas específicas de classificação de tráfego e se beneficia de características das redes SCADA e do paradigma SDN/OpenFlow. Nossa proposta utiliza SDN para coletar periodicamente estatísticas de rede dos equipamentos SCADA, que são posteriormente processados por algoritmos de classificação baseados em exemplares de uma única classe (OCC). Dado que informações sobre ataques direcionados à sistemas SCADA são escassos e pouco divulgados publicamente por seus mantenedores, a principal vantagem ao utilizar algoritmos OCC é de que estes não dependem de assinaturas de ataques para detectar possíveis tráfegos maliciosos. Como prova de conceito, desenvolvemos um protótipo de nossa proposta. Por fim, em nossa avaliação experimental, observamos a performance e a acurácia de nosso protótipo utilizando dois tipos de algoritmos OCC, e considerando eventos anômalos na rede SCADA, como um ataque de negação de serviço (DoS), e a falha de diversos dispositivos de campo. / Power grids have great influence on the development of the world economy. Given the importance of the electrical energy to our society, power grids are often target of network intrusion motivated by several causes. To minimize or even to mitigate the aftereffects of network intrusions, more secure protocols and standardization norms to enhance the security of power grids have been proposed. In addition, power grids are undergoing an intense process of modernization, and becoming highly dependent on networked systems used to monitor and manage power components. These so-called Smart Grids comprise energy generation, transmission, and distribution subsystems, which are monitored and managed by Supervisory Control and Data Acquisition (SCADA) systems. In this Masters dissertation, we investigate and discuss the applicability and benefits of using Software-Defined Networking (SDN) to assist in the deployment of next generation SCADA systems. We also propose an Intrusion Detection System (IDS) that relies on specific techniques of traffic classification and takes advantage of the characteristics of SCADA networks and of the adoption of SDN/OpenFlow. Our proposal relies on SDN to periodically gather statistics from network devices, which are then processed by One- Class Classification (OCC) algorithms. Given that attack traces in SCADA networks are scarce and not publicly disclosed by utility companies, the main advantage of using OCC algorithms is that they do not depend on known attack signatures to detect possible malicious traffic. As a proof-of-concept, we developed a prototype of our proposal. Finally, in our experimental evaluation, we observed the performance and accuracy of our prototype using two OCC-based Machine Learning (ML) algorithms, and considering anomalous events in the SCADA network, such as a Denial-of-Service (DoS), and the failure of several SCADA field devices.
|
5 |
Anomaly-based intrusion detection using Tree Augmented Naive Bayes ClassifierWester, Philip January 2021 (has links)
With the rise of information technology and the dependence on these systems, it becomes increasingly more important to keep the systems secure. The possibility to detect an intrusion with intrusion detection systems (IDS) is one of multiple fundamental technologies that may increase the security of a system. One of the bigger challenges of an IDS, is to detect types of intrusions that have previously not been encountered, so called unknown intrusions. These types of intrusions are generally detected by using methods collectively called anomaly detection methods. In this thesis I evaluate the performance of the algorithm Tree Augmented Naive Bayes Classifier (TAN) as an intrusion detection classifier. More specifically, I created a TAN program from scratch in Python and tested the program on two data sets containing data traffic. The thesis aims to create a better understanding of how TAN works and evaluate if it is a reasonable algorithm for intrusion detection. The results show that TAN is able to perform at an acceptable level with a reasonably high accuracy. The results also highlights the importance of using the smoothing operator included in the standard version of TAN. / Med informationsteknikens utveckling och det ökade beroendet av dessa system, blir det alltmer viktigt att hålla systemen säkra. Intrångsdetektionssystem (IDS) är en av många fundamentala teknologier som kan öka säkerheten i ett system. En av de större utmaningarna inom IDS, är att upptäcka typer av intrång som tidigare inte stötts på, så kallade okända intrång. Dessa intrång upptäcks oftast med hjälp av metoder som kollektivt kallas för avvikelsedetektionsmetoder. I denna uppsats utvärderar jag algoritmen Tree Augmented Naive Bayes Classifiers (TAN) prestation som en intrångsdetektionsklassificerare. Jag programmerade ett TAN-program, i Python, och testade detta program på två dataset som innehöll datatrafik. Denna uppsats ämnar att skapa en bättre förståelse för hur TAN fungerar, samt utvärdera om det är en lämplig algoritm för detektion av intrång. Resultaten visar att TAN kan prestera på en acceptabel nivå, med rimligt hög noggrannhet. Resultaten markerar även betydelsen av "smoothing operator", som inkluderas i standardversionen av TAN.
|
Page generated in 0.1832 seconds