• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • Tagged with
  • 18
  • 18
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studies in failure independent path-protecting p-cycle network design

Baloukov, Dimitri 11 1900 (has links)
Failure Independent Path-Protecting (FIPP) p-Cycles is a recently proposed protection architecture for transport networks that extends the properties of mesh-like efficiency and ring-like speed of span-protecting p-cycles to path protection. FIPP pcycles provide shared end-to-end protection to working paths and exhibit properties of pre-connection, end-node activation and failure independence. In his thesis we advance the state of the art in FIPP p-cycle networking. We first introduce two new methods for FIPP p-cycle network design: FIPP column generation (CG) and FIPP iterative heuristic (IH). This is followed by the introduction of a new method for joint capacity placement design called FIPP disjoint route set (DRS) joint capacity placement (JCP) which is followed by an in-depth investigation on the effects of jointness in FIPP p-cycle designs. Next we introduce a series of comparative case studies involving several pre-connected network survivability architectures in the context of transparent optical networking. These studies include topics of single, dual and node failure restorability, minimum wavelength assignment and transparent reach analysis. The final contribution of this thesis is the investigation of the capital expenditure associated with the implementation of FIPP p-cycle designs using optical transport networking equipment as described in the NOBEL cost model. A new method called FIPP maximize unit path straddlers (MUPS) is introduced as part of this final study in order to utilize the property of same wavelength protection. This new approach is motivated by opportunities for cost reduction discovered in the initial costing exercise of the NOBEL cost model investigation.
12

Survivor : estratégias de posicionamento de controladores orientadas à sobrevivência em redes definidas por software / Survivor : enhanced controller placement strategies for improving sdn survivability

Müller, Lucas Fernando January 2014 (has links)
O paradigma SDN simplifica o gerenciamento da rede ao concentrar todas as tarefas de controle em uma única entidade, o controlador. Nesse modo de operação, os dispositivos de encaminhamento só funcionam de forma completa enquanto conectados a um controlador. Neste contexto, a literatura recente identificou questões fundamentais, como o isolamento de dispositivos em função de disrupções na rede e a sobrecarga de um controlador, e propôs estratégias de posicionamento do controlador para enfrentá-las. Contudo, as propostas atuais têm limitações cruciais: (i) a conectividade dispositivo-controlador é modelada usando um único caminho, ainda que na prática possam ocorrer múltiplas conexões concorrentes; (ii) alterações no comportamento da chegada de novos fluxos são manipulados sob demanda, assumindo que a rede em si pode sustentar altas taxas de requisição; e (iii) mecanismos de recuperação de falhas requerem informações pré-definidas, que, por sua vez, não são otimizadas. Esta dissertação apresenta Survivor, uma nova abordagem de posicionamento do controlador para redes WAN que visa enfrentar esses desafios. A abordagem trata três aspectos de forma explícita durante o projeto da rede: a conectividade, a capacidade e a recuperação. Além disso, tais aspectos são planejados para dois estados distintos da rede: pré e pós-disrupção. Em outras palavras, a rede é configurada da melhor forma tanto para operação normal, quanto para operação após eventos de disrupção. Para este fim, a abordagem é dividida em duas etapas. A primeira define o posicionamento de instâncias do controlador, enquanto a segunda especifica uma lista de controladores de backup para cada dispositivo na rede. Ademais, são desenvolvidas duas estratégias com base na abordagem Survivor. A primeira, implementada em Programação Linear Inteira, garante uma solução ótima a um custo computacional alto. A segunda, implementada através de heurísticas, fornece soluções sub-ótimas a um custo computacional muito mais baixo. Comparações com o estado-da-arte mostram que a abordagem Survivor provê ganhos significativos na sobrevivência (identificado na probabilidade mais baixa de perda de conectividade) e no estado convergente da rede através de mecanismos de recuperação mais inteligentes. / The SDN paradigm simplifies network management by focusing all control tasks into a single entity, the controller. In this way, forwarding devices can only operate correctly while connected to a logically centralized controller. Within this context, recent literature identified fundamental issues, such as device isolation due to disruptions in the network and controller overload, and proposed controller placement strategies to tackle them. However, current proposals have crucial limitations: (i) device-controller connectivity is modeled using single paths, yet in practice multiple concurrent connections may occur; (ii) peaks in the arrival of new flows are only handled on-demand, assuming that the network itself can sustain high request rates; and (iii) failover mechanisms require predefined information which, in turn, has been overlooked. This dissertation presents Survivor, a novel controller placement approach for WAN networks that addresses these challenges. The approach explicitly considers the following three aspects in the network design process: connectivity, capacity and recovery. Moreover, these aspects are planned for two distinct states of the network: pre and postdisruption. In other words, the network is configured optimally for both normal operation and for operation after disruption events. To this end, the approach is divided into two steps. The first defines the positioning of the controller instances, and the second specifies a list of backup controllers for each device on the network. Moreover, two strategies based on Survivor are developed. The first strategy, implemented with Integer Linear Programming, guarantees an optimal solution with a high computational cost. The second strategy, implemented using heuristics, provides sub-optimal solutions with a much lower computational cost. Comparisons to the state-of-the-art show that the Survivor approach provides significant increases in network survivability (identified with the lowest probability of connectivity loss) and converged network state through smarter recovery mechanisms.
13

Survivor : estratégias de posicionamento de controladores orientadas à sobrevivência em redes definidas por software / Survivor : enhanced controller placement strategies for improving sdn survivability

Müller, Lucas Fernando January 2014 (has links)
O paradigma SDN simplifica o gerenciamento da rede ao concentrar todas as tarefas de controle em uma única entidade, o controlador. Nesse modo de operação, os dispositivos de encaminhamento só funcionam de forma completa enquanto conectados a um controlador. Neste contexto, a literatura recente identificou questões fundamentais, como o isolamento de dispositivos em função de disrupções na rede e a sobrecarga de um controlador, e propôs estratégias de posicionamento do controlador para enfrentá-las. Contudo, as propostas atuais têm limitações cruciais: (i) a conectividade dispositivo-controlador é modelada usando um único caminho, ainda que na prática possam ocorrer múltiplas conexões concorrentes; (ii) alterações no comportamento da chegada de novos fluxos são manipulados sob demanda, assumindo que a rede em si pode sustentar altas taxas de requisição; e (iii) mecanismos de recuperação de falhas requerem informações pré-definidas, que, por sua vez, não são otimizadas. Esta dissertação apresenta Survivor, uma nova abordagem de posicionamento do controlador para redes WAN que visa enfrentar esses desafios. A abordagem trata três aspectos de forma explícita durante o projeto da rede: a conectividade, a capacidade e a recuperação. Além disso, tais aspectos são planejados para dois estados distintos da rede: pré e pós-disrupção. Em outras palavras, a rede é configurada da melhor forma tanto para operação normal, quanto para operação após eventos de disrupção. Para este fim, a abordagem é dividida em duas etapas. A primeira define o posicionamento de instâncias do controlador, enquanto a segunda especifica uma lista de controladores de backup para cada dispositivo na rede. Ademais, são desenvolvidas duas estratégias com base na abordagem Survivor. A primeira, implementada em Programação Linear Inteira, garante uma solução ótima a um custo computacional alto. A segunda, implementada através de heurísticas, fornece soluções sub-ótimas a um custo computacional muito mais baixo. Comparações com o estado-da-arte mostram que a abordagem Survivor provê ganhos significativos na sobrevivência (identificado na probabilidade mais baixa de perda de conectividade) e no estado convergente da rede através de mecanismos de recuperação mais inteligentes. / The SDN paradigm simplifies network management by focusing all control tasks into a single entity, the controller. In this way, forwarding devices can only operate correctly while connected to a logically centralized controller. Within this context, recent literature identified fundamental issues, such as device isolation due to disruptions in the network and controller overload, and proposed controller placement strategies to tackle them. However, current proposals have crucial limitations: (i) device-controller connectivity is modeled using single paths, yet in practice multiple concurrent connections may occur; (ii) peaks in the arrival of new flows are only handled on-demand, assuming that the network itself can sustain high request rates; and (iii) failover mechanisms require predefined information which, in turn, has been overlooked. This dissertation presents Survivor, a novel controller placement approach for WAN networks that addresses these challenges. The approach explicitly considers the following three aspects in the network design process: connectivity, capacity and recovery. Moreover, these aspects are planned for two distinct states of the network: pre and postdisruption. In other words, the network is configured optimally for both normal operation and for operation after disruption events. To this end, the approach is divided into two steps. The first defines the positioning of the controller instances, and the second specifies a list of backup controllers for each device on the network. Moreover, two strategies based on Survivor are developed. The first strategy, implemented with Integer Linear Programming, guarantees an optimal solution with a high computational cost. The second strategy, implemented using heuristics, provides sub-optimal solutions with a much lower computational cost. Comparisons to the state-of-the-art show that the Survivor approach provides significant increases in network survivability (identified with the lowest probability of connectivity loss) and converged network state through smarter recovery mechanisms.
14

Survivor : estratégias de posicionamento de controladores orientadas à sobrevivência em redes definidas por software / Survivor : enhanced controller placement strategies for improving sdn survivability

Müller, Lucas Fernando January 2014 (has links)
O paradigma SDN simplifica o gerenciamento da rede ao concentrar todas as tarefas de controle em uma única entidade, o controlador. Nesse modo de operação, os dispositivos de encaminhamento só funcionam de forma completa enquanto conectados a um controlador. Neste contexto, a literatura recente identificou questões fundamentais, como o isolamento de dispositivos em função de disrupções na rede e a sobrecarga de um controlador, e propôs estratégias de posicionamento do controlador para enfrentá-las. Contudo, as propostas atuais têm limitações cruciais: (i) a conectividade dispositivo-controlador é modelada usando um único caminho, ainda que na prática possam ocorrer múltiplas conexões concorrentes; (ii) alterações no comportamento da chegada de novos fluxos são manipulados sob demanda, assumindo que a rede em si pode sustentar altas taxas de requisição; e (iii) mecanismos de recuperação de falhas requerem informações pré-definidas, que, por sua vez, não são otimizadas. Esta dissertação apresenta Survivor, uma nova abordagem de posicionamento do controlador para redes WAN que visa enfrentar esses desafios. A abordagem trata três aspectos de forma explícita durante o projeto da rede: a conectividade, a capacidade e a recuperação. Além disso, tais aspectos são planejados para dois estados distintos da rede: pré e pós-disrupção. Em outras palavras, a rede é configurada da melhor forma tanto para operação normal, quanto para operação após eventos de disrupção. Para este fim, a abordagem é dividida em duas etapas. A primeira define o posicionamento de instâncias do controlador, enquanto a segunda especifica uma lista de controladores de backup para cada dispositivo na rede. Ademais, são desenvolvidas duas estratégias com base na abordagem Survivor. A primeira, implementada em Programação Linear Inteira, garante uma solução ótima a um custo computacional alto. A segunda, implementada através de heurísticas, fornece soluções sub-ótimas a um custo computacional muito mais baixo. Comparações com o estado-da-arte mostram que a abordagem Survivor provê ganhos significativos na sobrevivência (identificado na probabilidade mais baixa de perda de conectividade) e no estado convergente da rede através de mecanismos de recuperação mais inteligentes. / The SDN paradigm simplifies network management by focusing all control tasks into a single entity, the controller. In this way, forwarding devices can only operate correctly while connected to a logically centralized controller. Within this context, recent literature identified fundamental issues, such as device isolation due to disruptions in the network and controller overload, and proposed controller placement strategies to tackle them. However, current proposals have crucial limitations: (i) device-controller connectivity is modeled using single paths, yet in practice multiple concurrent connections may occur; (ii) peaks in the arrival of new flows are only handled on-demand, assuming that the network itself can sustain high request rates; and (iii) failover mechanisms require predefined information which, in turn, has been overlooked. This dissertation presents Survivor, a novel controller placement approach for WAN networks that addresses these challenges. The approach explicitly considers the following three aspects in the network design process: connectivity, capacity and recovery. Moreover, these aspects are planned for two distinct states of the network: pre and postdisruption. In other words, the network is configured optimally for both normal operation and for operation after disruption events. To this end, the approach is divided into two steps. The first defines the positioning of the controller instances, and the second specifies a list of backup controllers for each device on the network. Moreover, two strategies based on Survivor are developed. The first strategy, implemented with Integer Linear Programming, guarantees an optimal solution with a high computational cost. The second strategy, implemented using heuristics, provides sub-optimal solutions with a much lower computational cost. Comparisons to the state-of-the-art show that the Survivor approach provides significant increases in network survivability (identified with the lowest probability of connectivity loss) and converged network state through smarter recovery mechanisms.
15

Novel Approaches and Architecture for Survivable Optical Internet

Haque, Anwar Ariful 12 April 2013 (has links)
Any unexpected disruption to WDM (Wavelength Division Multiplexing) based optical networks which carry data traffic at tera-bit per second may result in a huge loss to its end-users and the carrier itself. Thus survivability has been well-recognized as one of the most important objectives in the design of optical Internet. This thesis proposes a novel survivable routing architecture for the optical Internet. We focus on a number of key issues that are essential to achieve the desired service scenarios, including the tasks of (a) minimizing the total number of wavelengths used for establishing working and protection paths in WDM networks; (b) minimizing the number of affected working paths in case of a link failure; (c) handling large scale WDM mesh networks; and (d) supporting both Quality of Service (QoS) and best-effort based working lightpaths. To implement the above objectives, a novel path based shared protection framework namely Group Shared protection (GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy, and optimization is performed on these PGs. To the best of our knowledge this is the first work done in the area of group based WDM survivable routing approaches where not only the resource sharing is conducted among the PGs to achieve the best possible capacity efficiency, but also an integrated survivable routing framework is provided by incorporating the above objectives. Simulation results show the effectiveness of the proposed schemes.
16

A Chance Constraint Model for Multi-Failure Resilience in Communication Networks

Helmberg, Christoph, Richter, Sebastian, Schupke, Dominic 03 August 2015 (has links) (PDF)
For ensuring network survivability in case of single component failures many routing protocols provide a primary and a back up routing path for each origin destination pair. We address the problem of selecting these paths such that in the event of multiple failures, occuring with given probabilities, the total loss in routable demand due to both paths being intersected is small with high probability. We present a chance constraint model and solution approaches based on an explicit integer programming formulation, a robust formulation and a cutting plane approach that yield reasonably good solutions assuming that the failures are caused by at most two elementary events, which may each affect several network components.
17

Novel Approaches and Architecture for Survivable Optical Internet

Haque, Anwar Ariful 12 April 2013 (has links)
Any unexpected disruption to WDM (Wavelength Division Multiplexing) based optical networks which carry data traffic at tera-bit per second may result in a huge loss to its end-users and the carrier itself. Thus survivability has been well-recognized as one of the most important objectives in the design of optical Internet. This thesis proposes a novel survivable routing architecture for the optical Internet. We focus on a number of key issues that are essential to achieve the desired service scenarios, including the tasks of (a) minimizing the total number of wavelengths used for establishing working and protection paths in WDM networks; (b) minimizing the number of affected working paths in case of a link failure; (c) handling large scale WDM mesh networks; and (d) supporting both Quality of Service (QoS) and best-effort based working lightpaths. To implement the above objectives, a novel path based shared protection framework namely Group Shared protection (GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy, and optimization is performed on these PGs. To the best of our knowledge this is the first work done in the area of group based WDM survivable routing approaches where not only the resource sharing is conducted among the PGs to achieve the best possible capacity efficiency, but also an integrated survivable routing framework is provided by incorporating the above objectives. Simulation results show the effectiveness of the proposed schemes.
18

A Chance Constraint Model for Multi-Failure Resilience in Communication Networks

Helmberg, Christoph, Richter, Sebastian, Schupke, Dominic 03 August 2015 (has links)
For ensuring network survivability in case of single component failures many routing protocols provide a primary and a back up routing path for each origin destination pair. We address the problem of selecting these paths such that in the event of multiple failures, occuring with given probabilities, the total loss in routable demand due to both paths being intersected is small with high probability. We present a chance constraint model and solution approaches based on an explicit integer programming formulation, a robust formulation and a cutting plane approach that yield reasonably good solutions assuming that the failures are caused by at most two elementary events, which may each affect several network components.

Page generated in 0.2431 seconds