Spelling suggestions: "subject:"beural"" "subject:"aneural""
501 |
Evaluating Transfer Learning Capabilities of Neural NetworkArchitectures for Image ClassificationDarouich, Mohammed, Youmortaji, Anton January 2022 (has links)
Training a deep neural network from scratch can be very expensive in terms of resources.In addition, training a neural network on a new task is usually done by training themodel form scratch. Recently there are new approaches in machine learning which usesthe knowledge from a pre-trained deep neural network on a new task. The technique ofreusing the knowledge from previously trained deep neural networks is called Transferlearning. In this paper we are going to evaluate transfer learning capabilities of deep neuralnetwork architectures for image classification. This research attempts to implementtransfer learning with different datasets and models in order to investigate transfer learningin different situations.
|
502 |
Biologically Inspired Modular Neural NetworksAzam, Farooq 19 June 2000 (has links)
This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning inspirations that can be subsequently utilized to design artificial neural network.
The artificial neural networks are touted to be a neurobiologicaly inspired paradigm that emulate the functioning of the vertebrate brain. The brain is a highly structured entity with localized regions of neurons specialized in performing specific tasks. On the other hand, the mainstream monolithic feed-forward neural networks are generally unstructured black boxes which is their major performance limiting characteristic. The non explicit structure and monolithic nature of the current mainstream artificial neural networks results in lack of the capability of systematic incorporation of functional or task-specific a priori knowledge in the artificial neural network design process. The problem caused by these limitations are discussed in detail in this dissertation and remedial solutions are presented that are driven by the functioning of the brain and its structural organization.
Also, this dissertation presents an in depth study of the currently available modular neural network architectures along with highlighting their shortcomings and investigates new modular artificial neural network models in order to overcome pointed out shortcomings. The resulting proposed modular neural network models have greater accuracy, generalization, comprehensible simplified neural structure, ease of training and more user confidence. These benefits are readily obvious for certain problems, depending upon availability and usage of available a priori knowledge about the problems.
The modular neural network models presented in this dissertation exploit the capabilities of the principle of divide and conquer in the design and learning of the modular artificial neural networks. The strategy of divide and conquer solves a complex computational problem by dividing it into simpler sub-problems and then combining the individual solutions to the sub-problems into a solution to the original problem. The divisions of a task considered in this dissertation are the automatic decomposition of the mappings to be learned, decompositions of the artificial neural networks to minimize harmful interaction during the learning process, and explicit decomposition of the application task into sub-tasks that are learned separately.
The versatility and capabilities of the new proposed modular neural networks are demonstrated by the experimental results. A comparison of the current modular neural network design techniques with the ones introduced in this dissertation, is also presented for reference. The results presented in this dissertation lay a solid foundation for design and learning of the artificial neural networks that have sound neurobiological basis that leads to superior design techniques. Areas of the future research are also presented. / Ph. D.
|
503 |
Integrating the key approaches of neural networksHoward, Beverley Robin 12 1900 (has links)
The thesis is written in chapter form. Chapter 1 describes some of the history
of neural networks and its place in the field of artificial intelligence. It indicates the
biological basis from which neural network approximation are made.
Chapter 2 describes the properties of neural networks and their uses. It introduces the concepts of
training and learning.
Chapters 3, 4, 5 and 6 show the perceptron and adaline in feedforward and recurrent networks
particular reference is made to regression substitution by "group method data handling.
Networks are chosen that explain the application of neural networks in classification,
association, optimization and self organization.
Chapter 7 addresses the subject of practical inputs to neural networks. Chapter 8 reviews some
interesting recent developments.
Chapter 9 reviews some ideas on the future technology for neural networks.
Chapter 10 gives a listing of some neural network types and their uses. Appendix A gives some of
the ideas used in portfolio selection for the Johannesburg Stock Exchange. / Computing / M. Sc. (Operations Research)
|
504 |
Development of a healthcare software system for the elderlyAlhimale, Laila January 2013 (has links)
This research focused on the implementation of a reliable intelligent fall detection system so as to reduce accidental falls among the elderly people. A video-based detection system was used because it preserved privacy while monitoring the activities of the senior citizens. Another advantage of the video-based system is that the senior citizens are able to move freely without experiencing any hassles in wearing them as opposed to portable fall detection sensors so that they can have a more independent and happy life. A scientific research method was employed to improve the existing fall detection systems in terms of reliability and accuracy. This thesis consists of four stages where the first stage reviews the literature on the current fall detection systems, the second stage investigates the various algorithms of these existing fall detection systems, the third stage describes the proposed fall detection algorithm in detecting falls using two distinct approaches. The first approach deals with the use of specific features of the silhouette, an extracted binary map obtained from the subtraction of the foreground from the background, to determine the fall angle (FA), the bounding box (BB) ratio, the Hidden Markov Models (HMM) and the combination of FA, BB, and HMM. The second approach used is the neural network approach which is incorporated in the algorithm to identify a predetermined set of situations such as praying, sitting, standing, bending, kneeling, and lying down. The fourth stage involves the evalua- tion of the developed video-based fall detection system using different metrics which measure sensitivity (i.e. the capacity of the fall detection system to detect as well as declare a fall) and specificity (i.e. the capacity of the algorithm to detect only falls) of this algorithm. The video camera was properly positioned to avoid any occluding objects and also to cover a certain range of motion of the stunt participants performing the falls. The silhouette is extracted using an approximate median filtering approach and the threshold criteria value of 30 pixels was used. Morphological filtering methods that were dilation and erosion were used to remove any spurious noises from the extracted image prior to subsequent feature analysis. Then, this extracted silhouette was scaled and quantised using 8 bits/pixel and compared to the set of predetermined scenarios using a neural network of perceptrons. This neural network was trained based on various situations and the falls of the participants which represent inputs to the neural network algorithm during the neural learning process. In this research study, the built neural network consisted of 600 inputs, as well as 10 neurons in the hidden layer together with 7 distinct outputs which represent the set of predefined situations. Furthermore, an alarm generation algorithm was included in the fall detection algorithm such that there were three states that were STATE NULL (set at 0), STATE LYING (set at 1) and STATE ALL OTHERS (set at 2) and the initial alarm count was set to 90 frames (meaning 3 seconds of recorded consecutive images at 30 frames per second). Therefore, an alarm was generated only when the in-built counter surpassed this threshold of 90 frames to signal that a fall occurred. Following the evaluation stage, it was found that the combination of the first approach fall detection algorithm method (fall angle, bounding box, and hidden Markov) was 89% with specificity and 84.2% with sensitivity which is better than individual performance. Moreover, it was found that the second approach fall detection algorithm method (neural network performance) 94.3% of the scenarios were successfully classified whereby the specificity of the developed algorithm was determined to be 94.8% and the sensitivity was 93.8% which altogether show a promising overall performance of the fall detection video-based intelligent system. Moreover, the developed fall detection system were tested using two types of handicaps such as limping and stumbling stunt participants to observe how well this detection algorithm can detect falls as in the practical situations encountered or present in elderly people. In these cases it was found that about 90.2% of the falls were detected which showed still that the developed algorithm was quite robust and reliable subjected to these two physical handicaps motion behaviours.
|
505 |
The Realization of a Digital Correlation Detector of Telemetry Frame-Synchronization-Pattern Using a Neural NetworkJun, Zhang, Yi, Qiu, Yan, Du, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / In this paper, a method for digital correlation detector that takes advantage of the frame-synchronization-pattern feature of coincidence rate and adopts a multiple-bit detection window is proposed. Based on this method, a new digital correlation detector with a neural network is designed. It can recognizes frame-synchronization-pattern with error bits and slippage bits correctly, which has been approved practically according to the experimental results.
|
506 |
Artificial neural networks, motor programs and motor learning侯江濤, Hau, Kong-to, William. January 1999 (has links)
published_or_final_version / Physiology / Doctoral / Doctor of Philosophy
|
507 |
Expression of neurotrophin receptors and its role in the compartmentalization of the cerebellum in the rodent楊懷濤, Yang, Huaitao. January 1999 (has links)
published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
|
508 |
A neural network approach to land use/land cover change detection陳章偉, Chan, Cheung-Wai, Jonathan. January 1998 (has links)
published_or_final_version / Urban Planning and Environmental Management / Doctoral / Doctor of Philosophy
|
509 |
Studying the roles of conserved domains of the transcription factor Sox10 in neural crest developmentChee, Ming-chu, Daisy., 池明珠. January 2008 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
|
510 |
Neural network based exchange-correlation functionalLi, Xiaobo, 李曉博 January 2007 (has links)
published_or_final_version / abstract / Chemistry / Master / Master of Philosophy
|
Page generated in 0.0587 seconds