Spelling suggestions: "subject:"beural excitability"" "subject:"beural excitabilité""
1 |
USE OF HUMAN IPSC-DERIVED NEURON MODEL TO STUDY SCN2A GENETIC VARIANT L1342PZhefu Que (14103123) 16 November 2022 (has links)
<p>Epilepsies are the results of abnormal brain hyperactivities caused by brain injury, drug intoxication, and genetic perturbations. In the group of genetic-related epilepsies, the ion channel mutations contribute 25% of total epilepsy cases. Many studies suggest some forms of severe epilepsies can start early in patients’ lives, with epilepsy starting during infancy and childhood. With the wide adoption of genomic sequencing in children having seizures, an increasing number of <em>SCN2A</em> genetic variants have been revealed as genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is predominantly expressed in the pyramidal excitatory neurons and supports action potential (AP) firing. One recurrent SCN2A genetic variant is L1342P, which was identified in multiple patients with epileptic encephalopathy and intractable seizures. However, the mechanism underlying L1342P-mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To probe the potential hypothesized biophysical property changes, we used a heterologous expression system expressing the Nav1.2-L1342P. We observed prominent but quite complex gating kinetics without significant changes in window current. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human-induced pluripotent stem cell (hiPSC) line from a male donor, in which L1342P was introduced by CRISPR/Cas9-mediated genome editing. Using patch-clamping and microelectrode array (MEA) recordings, we revealed that cortical neurons derived from hiPSCs carrying heterozygous L1342P variant have significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, suggesting hyperexcitability phenotypes. Interestingly, L1342P neuronal culture displayed a degree of resistance to the anticonvulsant medication phenytoin, which recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a compound showing greater specificity on Nav1.2 over other sodium channel subtypes, can potently alleviate spontaneous and chemically induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.</p>
|
2 |
GABA<sub>A</sub> Receptor Homeostasis at the <i>C. elegans</i> Neuromuscular JunctionSujkowski, Alyson L. 09 September 2010 (has links)
No description available.
|
3 |
Elucidation of the Role of miR-184 in the Development and Maintenance of the Drosophila Melanogaster Nervous SystemFaggins, Athenesia January 2013 (has links)
MicroRNAs (miRNAs) are short, non-coding RNA sequences that are generated from longer primary transcripts (pri-miRNA). These pri-miRNAs are processed by the endonuclease Drosha into a hairpin secondary structure (pre-miRNA), exported from the nucleus and cleaved by the enzyme Dicer to form a duplex RNA molecule. This miRNA:miRNA* duplex is subsequently further processed to form a single-stranded, mature miRNA. miRNAs have been extensively characterized and are known to play important roles in various physiologic and pathologic pathways. One hallmark of miRNAs function is their ability to modulate the downstream activities of protein-coding genes, as well as various other aspects of gene expression, by acting as post-transcriptional repressors of their messengerRNA (mRNA) targets. miR-184 is a highly conserved miRNA gene expressed in the Drosophila nervous system throughout development; and has been shown to target key regulators of differentiation, proliferation and apoptosis. Here we identify a novel role for miR-184 in regulating the development and maintenance of the Drosophila melanogaster post-embryonic nervous system. We present evidence which suggest miR-184 targets (i) paralytic (para), a voltage-gated sodium channel, shown to control neuronal excitability; and (ii) tramtrack69 (ttk69), a transcription factor known to regulate glial cell number and fate determination during embryonic development. In the absence of miR-184, homozygous loss-of-function mutant adult flies demonstrate hyperactive episodes in response to mechanical shock, indicative of increased susceptibility to seizures. Homozygous loss-of-function mutants also exhibit shortened lifespan, as well as reduced group longevity. Additionally, miR-184 deficient mutant larvae exhibit abnormal development of glia and glial progenitors; while expression of miR-184 exclusively in glia - reversed polarity- (repo) expressing cells - up-regulates development of glial cells. Phenotypes of the adult loss-of-function mutant are suppressed by genetic loss of para function; while larval phenotypes are rescued by reducing the genetic dosage of ttk69. These data imply that miR-184 functions to control post-embryonic gliogenesis, as well as in maintaining neuronal excitability and integrity of the Drosophila aging brain. / Biology
|
Page generated in 0.0454 seconds