• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 119
  • 119
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Characterizing Spontaneous Neurophysiological Activity with Measures of Statistical Serial Dependence: a Summary Statistic and an Extension of the Joint Interval Histogram

Weil, Jon C. (Jon Christopher) 08 1900 (has links)
Two measures which indicate statistical serial dependence were evaluated. The n-dimensional Average Stored Information index (ndASI) is a measure of conditional information, which compares the entropies of higher order conditional distributions to estimate average statistical serial dependence. The generalized ranked joint interval histogram (RJIH-o) is a new nonparametric graphical analysis method. It extends the joint interval histogram by depicting longer interval sequences and can be interpereted precisely analagously to the joint interval histogram. The generalized ranked joint interval histogram correctly represents independence in a Poisson process model and statistical serial dependence in a directionally reinforced Markov model. The generalized ranked joint interval histogram correctly depicts the underlying periodic and strange attractors in a standard map model. Both measures can be used to effectively analyze interspike interval sequences from spontaneous neurophsyiological activity effectively.
82

Nonlinear Approaches for Neural Encoding and Decoding

Batty, Eleanor January 2020 (has links)
Understanding the mapping between stimulus, behavior, and neural responses is vital for understanding sensory, motor, and general neural processing. We can examine this relationship through the complementary methods of encoding (predicting neural responses given the stimulus) and decoding (reconstructing the stimulus given the neural responses). The work presented in this thesis proposes, evaluates, and analyzes several nonlinear approaches for encoding and decoding that leverage recent advances in machine learning to achieve better accuracy. We first present and analyze a recurrent neural network encoding model to predict retinal ganglion cell responses to natural scenes, followed by a decoding approach that uses neural networks for approximate Bayesian decoding of natural images from these retinal cells. Finally, we present a probabilistic framework to distill behavioral videos into useful low-dimensional variables and to decode this behavior from neural activity.
83

Prostaglandin modulation of dopamine-mediated neurotransmission in the central nervous system.

Schwarz, Roy D. January 1981 (has links)
No description available.
84

Neuromodulation of spinal autonomic regulation

Zimmerman, Amanda L. 31 August 2011 (has links)
The central nervous system is largely responsible for receiving sensory information from the environment and determining motor output. Yet, centrally-derived behavior and sensation depends on the optimal maintenance of the cells, tissues, and organs that feed and support these functions. Most of visceral regulation occurs without conscious oversight, making the spinal cord a key site for integration and control. How the spinal cord modulates output to our organs, or sensory information from them, is poorly understood. The overall aim of this dissertation was to better understand spinal processing of both visceral sensory information to and sympathetic output from the spinal cord. I first established and validated a HB9-GFP transgenic mouse model that unambiguously identified sympathetic preganglionic neurons (SPNs), the spinal output neurons for the sympathetic nervous system. Using this model, I investigated the electrophysiological similarities and diversity of SPNs, and compared their active and passive membrane properties to those in other animal models. My results indicate that while many of the same characteristics are shared, SPNs are a heterogeneous group that can be differentiated based on their electrophysiological properties. Since descending monoaminergic pathways have particularly dense projections to sympathetic regions of the spinal cord, I next examined the modulatory role that the monoamines have on spinal sympathetic output. While each neuromodulator tested had a unique signature of action, serotonin and norepinephrine appeared to increase the excitability of individual SPNs, while dopamine had more mixed actions. Since many autonomic reflexes are integrated by the spinal cord, I also questioned whether these reflexes would be similarly modulated. I therefore developed a novel in vitro spinal cord and sympathetic chain preparation, which allowed for the investigation of visceral afferent-mediated reflexes and their neuromodulation by monoamines. This preparation exposed a dichotomy of action, where sympathetic and somatic motor output is generally enhanced by the monoamines, but reflexes mediated by visceral input are depressed. Utilizing the spinal cord and sympathetic chain preparation, I also investigated how the spinal cord modulates visceral sensory information. One of the most powerful means of selectively inhibiting afferent information from reaching the spinal cord is presynaptic inhibition. I hypothesized that both spinal visceral afferents and descending monoaminergic systems would depress transmission of visceral afferents to the spinal cord. My results demonstrated that activity in spinal visceral afferents can lead to spinally generated presynaptic inhibition, and that in addition to depressing synaptic transmission to the spinal cord, the monoamines also depress the intrinsic circuitry that generates this activity-dependent presynaptic inhibition. Taken together, my results indicate that descending monoaminergic pathways act to limit the amount of visceral sensory information reaching the central nervous system and increase sympathetic output, resulting in an uncoupling of output from visceral sensory input and transitioning to a feed-forward, sympathetically dominant control strategy. This combination offers complex modulatory strategies for descending systems.
85

Actions of a partial D2-like agonist during low or high dopaminergic tone: A neurochemical study using preweanling rats

Yoshida, Shelly Taeko 01 January 2005 (has links)
The neurochemical effects of partial D2-like agonists (i.e., terguride) to alter striatal DOPA accumulation under high and low dopaminergic tone was examined in preweanling rats. The results indicate that terguride has agonist-like (quinpirole-like) effects under a low dopaminergic tone and antagonist-like (haloperidol-like) effects under a high dopaminergic tone during the preweanling period.
86

THE DEVELOPMENT AND REGULATION OF THE MURINE MYOCARDIAL MUSCARINIC RECEPTOR.

Barritt, Diana Susan. January 1982 (has links)
No description available.
87

Functional Properties and Organization of Primary Somatosensory Cortex

Esteky, Hossein 12 1900 (has links)
The physiological characteristics and organization of cat primary somatosensory cortex (SI) were studied in electrophysiological and anatomical experiments. In single cell recording experiments, quantitatively controlled mechanical stimuli were used to examine the responses of SI cortical neurons to the velocity component of skin or hair displacement. The firing frequency of most rapidly adapting neurons increased as stimulus velocity was increased. Rapidly adapting neurons were classified based on their response patterns to constant-velocity ramp stimuli. Neurons in these classes differed significantly in sensitivity to stimulus velocity and amplitude, adaptation rate, and spontaneous firing rate. The results suggest that frequency coding of stimulus displacement velocity could be performed by individual SI rapidly adapting neurons, and that the classes of rapidly adapting neurons may play different roles in sensation of tactile stimuli. Tract-tracing experiments were used to investigate the ipsilateral corticocortical connections of areas 3b and 2 in SI. Different patterns of connections were found for these areas: area 2 projects to areas 3b, 1, 3a, 5a, 4 and second somatosensory cortex (SII), and area 3b projects to areas 2, 1, 3a and SII. To further compare the organization of these areas, the thalamic input to the forepaw representation within each area was studied. The forepaw region in area 3b receives thalamic input exclusively from ventroposteriopr lateral nucleus (VPL), while area 2 receives input from VPL, medial division of the posterior complex (PoM), and lateral posterior nucleus (LP). These results suggest that area 2 lies at a higher position in the hierarchy of somatosensory information flow.
88

Effect of Colchicine on Neuronal Excitabilty

Okafo, Ngozi 08 1900 (has links)
The abundance of microtubules in receptive dendrites suggests they may function in sensory transduction. Responses of frog muscle spindle receptors and joint receptors is inhibited within 25 minutes by 50 mM colchicine, a microtubuledisrupting agent. The inhibition is reversible upon removal of colchicine, and the time course of recovery is comparable to that of inhibition. Frog olfactory responses are briefly inhibited by washing the olfactory mucosa with perfusion fluid. Colchicine accentuates the inhibition and substantially retards the rate of recovery in a dose-dependent fashion. Colchicine does not affect axonal conduction, nor the oxygen uptake of isolated crab or frog leg nerves. The inhibitory action of colchicine is therefore an effect on the electrical excitability of the receptive dendrites or soma, and not an effect on axonal conduction.
89

Chronic variable stress affects hippocampal neurotrophic factor gene expression in the novelty-seeking phenotype: epigenetic regulation

Unknown Date (has links)
Experimentally naive rats exhibit varying degrees of novelty exploration. Some rats display high rates of locomotor reactivity to novelty (high responders; HR), and others display low rates (low responders; LR). The novelty-seeking phenotype (LRHR) is introduced as a model of stress responsiveness. In this thesis I examined effects of chronic variable physical and social stress or control handling on the levels of various neurotrophins in the hippocampus, and changes in mossy fibre terminal fields in LRHR rats. A positive correlation is seen between histone deacetylase 2 and brain-derived neurotrophic factor (BDNF) levels both of which are oppositely regulated in LRHR CA3 fields in response to chronic social stress. Increase in BDNF levels in CA3 field accompanied increase in supra-pyramidal mossy fibre terminal field size (SP-MF) in HRs, and decrease in BDNF levels accompanied decrease in SP-MF volume in LRs. Epigenetic regulation of neurotrophic support underlying these structural changes is discussed. / by Ozge Oztan. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
90

Protecting Synaptic Function From Acute Oxidative Stress: A Novel Role For Big K+ (BK) Channels And Resveratrol-Like Compounds

Unknown Date (has links)
Oxidative stress causes neural damage and inhibits essential cellular processes, such as synaptic transmission. Despite this knowledge, currently available pharmaceutical agents cannot effectively protect neural cells from acute oxidative stress elicited by strokes, heart attacks, and traumatic brain injuries in a real life clinical setting. Our lab has developed an electrophysiology protocol to identify novel drugs that protect an essential cellular process (neurotransmission) from acute oxidative stress-induced damage. Through this doctoral dissertation, we have identified three new drugs, including a Big K+ (BK) K+ channel blocker (iberiotoxin), resveratrol, and a custom made resveratrol-like compound (fly2) that protect synaptic function from oxidative stress-induced insults. Further developing these drugs as neuroprotective agents may prove transformative in protecting the human brain from acute oxidative stress elicited by strokes, heart attacks, and traumatic brain injuries. Inhibiting the protein kinase G (PKG) pathway protects neurotransmission from acute oxidative stress. This dissertation has expanded upon these findings by determining that the PKG pathway and BK K+ channels function through independent biochemical pathways to protect neurotransmission from acute oxidative stress. Taken together, this dissertation has identified two classes of compounds that protect neurotransmission from acute oxidative stress, including resveratrol-like compounds (resveratrol, fly2) and a BK K+ channel inhibitor (iberiotoxin). Further developing these drugs in clinical trials may finally lead to the development of an effective neuroprotective agent. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0912 seconds