• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 40
  • 21
  • 19
  • 16
  • 14
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Prefrontal-Amygdala Circuits Regulating Fear and Safety

Stujenske, Joseph Matthew January 2016 (has links)
Switching between a state of fear and safety is a critical aspect of adaptive behavior. Aversive and non-aversive associations must be formed quickly and reliably but remain malleable as these associations change dynamically. When these associations become biased towards aversive associations by traumatic and stressful circumstances, as in PTSD, fear generalization and impaired fear extinction arise. These changes are associated with reduced activity in the medial prefrontal cortex (mPFC) and enhanced activity in the basolateral amygdala (BLA). It has been hypothesized that the mPFC mediates top-down control of the BLA to signal safety. It has previously been demonstrated that synchronous activity within the mPFC-BLA circuit is strongly engaged during fear conditioning, but it is unknown how activity in this circuit changes to mediate aversive discrimination. We investigated how the mPFC and BLA cooperate to mediate successful discrimination between aversive and non-aversive stimuli both for learned and innately-valent associations. Extracellular elecrophysiological recordings were obtained simultaneously form the mPFC and BLA in mice during innate anxiety, fear discrimination, and fear extinction. Local field potentials were recorded in both structures along with single unit recordings from the BLA. We discovered that fear was associated with enhanced theta-frequency synchrony and theta-gamma coupling within the mPFC-BLA circuit. On the other hand, safety was associated with predominant mPFC-to-BLA directionality of synchronous information flow and enhanced fast gamma frequency activity in both structures. Interestingly, gamma oscillations in the BLA were strongly coupled to theta frequency activity arising in the mPFC. This data is consistent with entrainment of inhibitory circuits in the BLA by mPFC input to mediate safety.
82

Dissecting the role of the hippocampal-prefrontal circuit in anxiety

Padilla Coreano, Nancy January 2016 (has links)
The ventral hippocampus (vHPC), medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) are each required for the expression of anxiety-like behavior. Yet the role of each individual element of the circuit is unclear. The projection from the vHPC to the mPFC has been implicated in anxiety-related neural synchrony and spatial representations of aversion. The role of this projection was examined using multi-site neural recordings combined with optogenetic terminal inhibition. Inhibition of vHPC input to the mPFC disrupted anxiety and mPFC representations of aversion, and reduced theta synchrony in a pathway-, frequency- and task-specific manner. Moreover, bilateral, but not unilateral, inhibition altered physiological correlates of anxiety in the BLA, mimicking a safety-like state. These results reveal a specific role for the vHPC-mPFC projection in anxiety-related behavior and the spatial representation of aversive information within the mPFC. Moreover, these data suggested that theta-frequency input from the vHPC plays a causal role in anxiety-like behavior. Next, it was investigated whether optogenetic stimulation of the vHPC-mPFC at a theta frequency was sufficient to increase anxiety. Stimulating the vHPC input to the mPFC with a sinusoidal light pattern at 8 Hz significantly increased anxiety behavior. The anxiogenic effect of vHPC terminal stimulation was frequency- (8 Hz but not 20 Hz) and pattern- (sinusoids but not pulses) specific. To understand how pulses and sinusoidal light modulate mPFC neurons differentially, mPFC pyramidal neurons were recorded both in vitro and in vivo while stimulating vHPC terminals with the same sinusoidal or pulsatile patterns. In vitro, sinusoidal stimulation increased the rate of spontaneous EPSCs, while pulses evoked strong, stimulus-locked EPSCs. In vivo, sinusoidal stimulation of vHPC terminals increased the phase-locking of mPFC single unit spiking to the optical stimulation pattern without changing overall firing rates. Together, these results suggest that sinusoidal stimulation at 8 Hz enhances theta-frequency activity in mPFC neurons as well as anxiety-related behavior. Moreover, they suggest that theta-frequency components of neural activity play a privileged role in vHPC-mPFC communication and hippocampal-dependent forms of anxiety.
83

High Speed Volumetric SCAPE Imaging for Different Model Animals

Li, Wenze January 2019 (has links)
It is a major challenge to understand functional neuronal circuits across the whole brain. Existing methods for observing neuronal activity represent a major bottleneck in addressing biological problems. In our lab, we developed Swept Confocally Aligned Planar Excitation (SCAPE) microscopy, which offers the ability to image a large 3D volume (e.g. 1000x800x250um) at speeds exceeding 10 volumes per second. Used with different genetically encoded fluorescent indicators, SCAPE enables us to observe neuronal activity across the whole brain of different small animal models, or a much larger volume of intact cortex/tissue compared to traditional approaches. The unique single objective design and flexible system layout of SCAPE makes it simple to image different samples without complex sample preparation and restraint. During this thesis work, I collaborated with biology and neuroscience labs to develop and optimize a range of novel in-vivo/in-vitro neuroimaging applications using SCAPE microscopy. In particular, my research has focused on using SCAPE to image freely crawling Drosophila Melanogaster larvae, intact mouse olfactory epithelium, head fixed behaving adult Drosophila, larval zebrafish brain and beating heart, and the neuronal system of behaving C. elegans, all in collaboration with experts in these models from Columbia University and other research institutions. I also developed and optimized different sample preparations and experimental procedures to take full advantage of the high-speed 3D imaging capabilities and flexibility of SCAPE microscopy. Finally, I optimized computational and image analysis techniques for large scale 5D SCAPE imaging datasets, including 3D cell tracking, large scale 3D data motion correction/registration, and cellular level neuronal activity extraction with different dimensionality reduction methods. The experiments I have performed in different animal models have enriched the long-term development of SCAPE by providing valuable feedback for system improvement and dissemination, and pushing the SCAPE design towards a more interchangeable platform with diverse capabilities suitable for routine uses by our collaborators and the wider neuroscience community.
84

Automated microfluidic screening and patterned illumination for investigations in Caenorhabditis elegans neuroscience

Stirman, Jeffrey Neil 16 December 2011 (has links)
The field of neuroscience has recently seen optogenetics emerge as a highly utilized and powerful method of non-invasive neural activation and inhibition. This thesis seeks to enhance the optogenetic toolbox through the design, construction, and evaluation of a number of hardware and software modules for research in Caenorhabditis elegans neuroscience. In the first aim, we combine optogenetics, microfluidics, and automated image processing, to create a system capable of high-throughput analysis of synaptic function. In the second aim, we develop a multi-modal illumination system for the manipulation of optogenetic reagents. The system is capable of multi-spectral illumination in definable patterns, with the ability to dynamically alter the intensity, color, and shape of the illumination. The illumination system is controlled by a set of software programs introduced in aim three, and is demonstrated through a set of experiments in aim four where we selectively activate and inhibit specific neural nodes expressing optogenetic reagents in freely moving C. elegans. With the ability to target specific nodes in a freely moving animal, we can correlate specific neural states to behaviors allowing for the dissection of neural circuits. Taken together, the developed technologies for optogenetic researchers will allow for experimentation with previously unattainable speed, precision and flexibility.
85

Putative Role of Connectivity in the Generation of Spontaneous Bursting Activity in an Excitatory Neuron Population

Shao, Jie 12 July 2004 (has links)
Population-wide synchronized rhythmic bursts of electrical activity are present in a variety of neural circuits. The proposed general mechanisms for rhythmogenesis are often attributed to intrinsic and synaptic properties. For example, the recurrent excitation through excitatory synaptic connections determines burst initiation, and the slower kinetics of ionic currents or synaptic depression results in burst termination. In such theories, a slow recovery process is essential for the slow dynamics associated with bursting. This thesis presents a new hypothesis that depends on the connectivity pattern among neurons rather than a slow kinetic process to achieve the network-wide bursting. The thesis begins with an introduction of bursts of electrical activity in a purely excitatory neural network and existing theories explaining this phenomenon. It then covers the small-world approach, which is applied to modify the network structure in the simulation, and the Morris-Lecar (ML) neuron model, which is used as the component cells in the network. Simulation results of the dependence of bursting activity on network connectivity, as well as the inherent network properties explaining this dependence are described. This work shows that the network-wide bursting activity emerges in the small-world network regime but not in the regular or random networks, and this small-world bursting primarily results from the uniform random distribution of long-range connections in the network, as well as the unique dynamics in the ML model. Both attributes foster progressive synchronization in firing activity throughout the network during a burst, and this synchronization may terminate a burst in the absence of an obvious slow recovery process. The thesis concludes with possible future work.
86

Role of spontaneous bursts in functional plasticity and spatiotemporal dynamics of dissociated cortical cultures

Madhavan, Radhika 08 June 2007 (has links)
What changes in our brain when we learn? This is perhaps the most intriguing question of science in this century. In an attempt to learn more about the inner workings of neural circuitry, I studied cultured 2-dimensional networks of neurons on multi-electrode arrays (MEAs). MEAs are ideal tools for studying long-term neural ensemble activity because many individual cells can be studied continuously for months, through electrical stimulation and recording. One of the most prominent patterns of activity observed in these cultures is network-wide spontaneous bursting, during which most of the active electrodes in the culture show elevated firing rates. We view the persistence of spontaneous bursting in vitro as a sign of arrested development due to deafferentation. Substituting distributed electrical stimulation for afferent input transformed the activity in dissociated cultures from bursting to more dispersed spiking, reminiscent of activity in the adult brain. Burst suppression reduced the variability in neural responses making it easier to induce and detect functional plasticity caused by tetanic stimulation. This suggests that spontaneous bursts interfere with the effects of external stimulation and that a burst-free environment leads to more stable connections and predictable effects of tetanization. Moreover, our culture models continuously receive input stimulation in the form of background electrical stimulation, and so better resemble the intact brain than isolated (non-continuously stimulated) cultures. The proportion of GABAergic neurons in the cultures was significantly increased (p<1e-2, paired t-test) after burst-quieting for 2 days, suggesting that burst suppression operated through the homeostatic control of inhibitory neurotransmitter levels. We also studied the role of spontaneous bursts as potential carriers of information in the network by clustering these spatiotemporally diverse bursts. Spontaneous burst clusters were stable over hours and tetanic stimulation significantly reorganized the distribution of the clusters. In summary, this body of work explores the rules of network-level functional plasticity and provides the input (electrical stimulation) output (spatiotemporal patterns) mappings for behavioral studies in embodied hybrid systems. The results of this study may also have clinical implications in the development of sensory prostheses and treatment of diseases of aberrant network activity such as epilepsy.
87

A role for hippocampal and midbrain neural processing in context-dependent spatial memory /

Puryear, Corey Brown. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 91-106).
88

The neuromuscular effects of a long-term static stretching program on the human soleus

Hayes, Bradley T. January 2006 (has links)
Thesis (Ph. D.)--Oregon State University, 2006. / Blank pages 143 and 159 not microfilmed. Includes bibliographical references. Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
89

The neuromuscular effects of a long-term static stretching program on the human soleus

Hayes, Bradley T. January 2006 (has links)
Thesis (Ph. D.)--Oregon State University, 2006. / Blank pages 143 and 159 not microfilmed. Includes bibliographical references.
90

The mindful brain : cortical organization and the group-selective theory of higher brain function

January 1982 (has links)
Gerald M. Edelman, Vernon B. Mountcastle ; introd. by Francis O. Schmitt. / Based on papers presented at the fourth intensive study program of the Neurosciences Research Program, held in June 1977. / Includes bibliographies.

Page generated in 0.0533 seconds