Spelling suggestions: "subject:"beural crest cell"" "subject:"aneural crest cell""
1 |
Hairy and enhancer of split 1 (Hes1) and Krüppel-like factor 4 (K1f4) in enteric neural crest cellSit, Yu-lam, Francesco. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Also available in print.
|
2 |
Roles for activator protein 2 (AP-2) transcription factors in zebrafish neural crest developmentLi, Wei. Cornell, Robert A. January 2008 (has links)
Thesis supervisor: Robert A. Cornell. Includes bibliographical references (p. 121-142).
|
3 |
Sources alternatives de cellules souches pour la bio-ingénierie de la dent / Alternative sources of stem cells for tooth bioengineeringAcuña Mendoza, Soledad 29 October 2015 (has links)
Les cellules de la crête neurale (CN) sont une population de cellules multipotentes que pendant le développement embryonnaire vont migrer et se différencier vers divers lignages comme mélanocytes, muscle lisse, neurones périphériques et entériques, glie ainsi que tissus mésenchymateux cranio-faciaux y compris ceux de la dent. Dans le contexte de l’étude de modèles pour l’ingénierie tissulaire de la dent, nous avons établi une nouvelle lignée de cellules souches embryonnaires (ES) à partir de blastocystes issus de croisements entre un souris Wnt1-Cre et souris rapportrices fluorescentes, les Rosa26 mT/mT. Dans ce system, les cellules qui acquièrent l’identité CN et expriment le gène Wnt1 vont devenir fluorescentes grâce à l’activation de la protéine Tomato, ce qui permet de suivre 1) leur différenciation in vitro 2) isolement et 3) devenir lorsqu’elles sont utilisées dans de modèles in vivo. En parallèle, nous avons mis au point un nouveau protocole simplifié de différenciation (monocouche et milieu défini), vers un phénotype CN. Finalement nous avons tenté de développer un protocole d’induction d’une compétence odontogénique. Notre étude montre que la lignée Wnt1 Cre/Tomato 1) présentent toutes les caractéristiques d’une lignée ES classique i.e. expression de marqueurs de pluripotence, caryotype normal, capacité à se différencier in vitro et in vivo en tissus dérivés des 3 feuillets embryonnaires 2) acquièrent une identité CN, après induction in vitro avec notre protocole de différenciation. 3) Par l’intermédiaire de réassociations tissulaires in vitro, nous avons montré que ces cellules sont capables d’interagir avec un épithélium oral pour former des tissus squelettiques oro-faciaux. Ce nouvel outil cellulaire devrait aider à la compréhension des signaux impliqués dans le dialogue ectomésenchymateux qui sous-tend la formation des tissus durs de la face mais aussi plus généralement permettre suivir le devenir de cellules CN dans des modèles d’ingénierie tissulaire. / Neural crest cells are multipotent progenitor cells that, during embryogenic development, migrate and differentiate into diverse lineages such as melanocytes, smooth muscle, peripheral and enteric neurons, glial cells as well as craniofacial mesenchymatic components, including teeth. In the context of the development of an odontogenic model for tissue engineering, we have generated a new cell line of embryonic stem cells (ES) obtained from blastocysts from crossing Wnt1-CRE mice with fluorescent reporter Rosa26 mT/mT mice. In this Cre/Lox system the cells that have acquired a CN identity and thus expressing Wnt1, will become and remain fluorescent due to the activation of Tomato expression. We have generated a simplified protocol in a monolayer cell culture in defined serum-free medium in order to differentiate the cells into CN cells, named ES-CN cells. Second, we investigated the signals necessary for the odontogenic specification of these ES-CN cells. Our study provides evidence that the Wnt1-CRE/Tomato cell line 1) is a competent ES cell line with the expression of pluripotent markers, a stable karyotype and the ability to differentiate in vitro and in vivo into all the three embryonic germ layers, 2) acquires in vitro a CN identity after induction with our protocol, 3) expresses odontogenic markers in hypoxic culture conditions and 4) is able to interact with an oral epithelium in order to form orofacial skeletal tissues via the tissue reassociation in vitro. This novel cell model should facilitate the understanding of the mechanisms implicated in the ectomesenchymatic interaction, at the base for formation of orofacial skeletal tissues, and will provide the possibility to follow the fate of ES-CN cells tissue engineering models of wounded orofacial structures in general.
|
4 |
Maternal health-related causes of cranial neural crest cell migration dysregulation, and their common clinical effectsTatavarthy, Manvita 25 October 2018 (has links)
Neural crest cells arise during neurulation, a process that occurs during the third week of embryogenesis. These diverse cells then divide into various subtypes including cranial neural crest cells and cardiac neural crest cells. Each of these subtypes gives rise to a wide range of features throughout the fetus. While these cells are extremely diverse, they are also incredibly sensitive to their surrounding environment. Many maternal conditions affect neural crest cell division and migration, but maternal alcohol consumption and hyperglycemia due to gestational diabetes will be discussed in detail, with special attention paid to tissues that derive from cranial neural crest cells.
While the initial mechanisms of the pathology vary for both of these conditions, what is remarkable is that they ultimately cause effects in similar ways. Both mechanisms lead to the creation of reactive oxygen species, which in turn trigger apoptotic pathways. Neural crest cell death causes a variety of congenital anomalies in fetuses, including craniofacial defects and cardiac outflow tract defects. Treatment options that have been researched in both conditions also vary, but are based on similar principles. Antioxidant therapies reduce the production of reactive oxygen species, thus reducing the severity of the anomalies affecting the fetus during development.
Both maternal alcohol consumption and gestational diabetes are important public health concerns, and their management is of utmost priority in society. By decreasing the rates of women who consume alcohol during pregnancy, and managing gestational diabetes in those at highest risk, the rates of fetal congenital defects could be decreased.
|
5 |
The role of teratogen exposure on neural crest cells in the pathogenesis of fetal alcohol spectrum disordersCarozza, Richard Bohling 03 November 2015 (has links)
Maternal consumption of ethanol during pregnancy contributes to a set of pathologies, grouped together as the fetal alcohol spectrum disorders, affecting as many as 5% of live births in the United States annually. Ethanol acts widely in the developing embryo, affecting many tissues, but causing deficits in neuronal and neural crest populations particularly. These deleterious effects cause archetypical craniofacial expression and neurological deficits, including microcephaly and neuronal dysfunction. Severity of symptoms is linked to frequency of maternal alcohol consumption as well as the maximum blood alcohol concentration reached by the mother.
The teratology of ethanol has been widely researched over the last four decades, with the link between the neural crest pathology and the fetal alcohol spectrum phenotype becoming clearer. Animal model studies have managed to replicate many of the symptoms seen in humans afflicted with fetal alcohol spectrum disorders, and have allowed us to elucidate the biochemical mechanisms behind the disease. There is no singular pathway responsible for the fetal alcohol spectrum disorders: over half a dozen models of dysfunction have been identified, and ethanol’s ability to react with a series of targets means that more pathways are likely to be discovered.
Current theories regarding the effects of ethanol on the neural crest have implicated apoptosis of the cephalic neural crest, mediated by G-protein coupled receptors, activation of a phospholipase C pathway, and subsequent release of intracellular calcium; perturbations of the actin cytoskeleton leading to migration dysfunction of neural crest cells in the developing neural tube; lack of functional trophic molecules, specifically Shh, likely due to dysfunction of the cholesterol biosynthetic pathway; lack of retinoic acid production; oxidative stress, production of reactive oxygen species, and iron dysregulation; and genetics, which seems to confer greater susceptibility and resistance to ethanol in certain individuals. Ultimately, a global model for ethanol’s actions on the developing fetus eludes researchers, as do any potential treatments, and more research is required to further elucidate ethanol’s teratogenic mechanism.
|
Page generated in 0.0708 seconds