• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • Tagged with
  • 41
  • 41
  • 41
  • 41
  • 37
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Guided local search for combinatorial optimisation problems

Voudouris, Christos January 1997 (has links)
No description available.
2

Artificial intelligence and simulations applied to interatomic potentials

Hobday, Steven January 1998 (has links)
The interatomic potential is a mathematical model that describes the chemistry occurring at the atomic level. It provides a functional mapping between the atomic nuclei coordinates and the total potential energy of a system. This thesis investigates three aspects of interatomic potentials, the first of which is the simulation of materials at the atomic scale using classical molecular dynamics (MD). Molecular dynamics code is used to follow the evolution of a system of discrete particles through time and is employed here to model the bombardment of fullerite films modified with low dose Argon ion impacts.
3

Intelligent hybrid approach for integrated design

Wakelam, Mark January 1998 (has links)
No description available.
4

Artificial intelligence based hybrid systems for financial forecasting

Castorina, Giovanni January 2001 (has links)
Current research carried out on financial forecasting has highlighted some limitations of classical econometric methods based on the assumption that the investigated time series can be described as stationary stochastic processes with Gaussian probability density functions. Chaotic behaviour, fractal characteristics and non-linear dynamics have been emerging in different aspects of the financial forecasting problem. The objective of this thesis is to take a system level perspective of the financial forecasting problem and to explore a number of approaches to enhance more 'traditional' decision making flows for stock market forecasting, with particular emphasis on stock selection and timing. To achieve this purpose, a number of stock selection and timing computational 'modules' are investigated. From a computational point of view, the investigation performed in this work encompass techniques such as artificial neural networks, genetic algorithms, chaos theory and fractal geometry, as well as more traditional methods such as clustering, screening, ranking, and statistics based models. From a financial data point of view, this research takes advantage of both fundamental and technical information to enhance the stock selection and timing processes and to cover several investment horizons. Three computational modules are proposed. First, a multivariate stock ranking module which uses fundamental information and is optimised through genetic algorithms. Second, a multivariate forecasting module which uses technical information and is based on artificial neural networks. Third, a univariate price time series forecasting module based on artificial neural networks. In addition, an integrated flow that takes advantage of some synergies and complementary properties of the devised modules is proposed. The effectiveness of the developed modules and the viability of the proposed integrated flow are evaluated over a number of investment horizons using (out-of-sample) historical data.
5

AN APPROACH TO INVERSE MODELING THROUGH THE INTEGRATION OF ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS

Bedida, Kirthi 01 January 2007 (has links)
A hybrid model integrating predictive capabilities of Artificial Neural Network (ANN) and optimization feature of Genetic Algorithm (GA) is developed for the purpose of inverse modeling. The proposed approach is applied to Superplastic forming of materials to predict the material properties which characterize the performance of a material. The study is carried out on two problems. For the first problem, ANN is trained to predict the strain rate sensitivity index m given the temperature and the strain rate. The performance of different gradient search methods used in training the ANN model is demonstrated. Similar approach is used for the second problem. The objective of which is to predict the input parameters, i.e. strain rate and temperature corresponding to a given flow stress value. An attempt to address one of the major drawbacks of ANN, which is the black box behavior of the model, is made by collecting information about the weights and biases used in training and formulating a mathematical expression. The results from the two problems are compared to the experimental data and validated. The results indicated proximity to the experimental data.
6

Distributed control for collective behaviour in micro-unmanned aerial vehicles

Ruini, Fabio January 2013 (has links)
The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.
7

Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand

Susnjak, Teo January 2009 (has links)
This thesis seeks to address current problems encountered when training classifiers within the framework of cascades of boosted ensembles (CoBE). At present, a signifi- cant challenge facing this framework are inordinate classifier training runtimes. In some cases, it can take days or weeks (Viola and Jones, 2004; Verschae et al., 2008) to train a classifier. The protracted training runtimes are an obstacle to the wider use of this framework (Brubaker et al., 2006). They also hinder the process of producing effective object detection applications and make the testing of new theories and algorithms, as well as verifications of others research, a considerable challenge (McCane and Novins, 2003). An additional shortcoming of the CoBE framework is its limited ability to train clas- sifiers incrementally. Presently, the most reliable method of integrating new dataset in- formation into an existing classifier, is to re-train a classifier from beginning using the combined new and old datasets. This process is inefficient. It lacks scalability and dis- cards valuable information learned in previous training. To deal with these challenges, this thesis extends on the research by Barczak et al. (2008), and presents alternative CoBE frameworks for training classifiers. The alterna- tive frameworks reduce training runtimes by an order of magnitude over common CoBE frameworks and introduce additional tractability to the process. They achieve this, while preserving the generalization ability of their classifiers. This research also introduces a new framework for incrementally training CoBE clas- sifiers and shows how this can be done without re-training classifiers from beginning. However, the incremental framework for CoBEs has some limitations. Although it is able to improve the positive detection rates of existing classifiers, currently it is unable to lower their false detection rates.
8

Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand

Susnjak, Teo January 2009 (has links)
This thesis seeks to address current problems encountered when training classifiers within the framework of cascades of boosted ensembles (CoBE). At present, a signifi- cant challenge facing this framework are inordinate classifier training runtimes. In some cases, it can take days or weeks (Viola and Jones, 2004; Verschae et al., 2008) to train a classifier. The protracted training runtimes are an obstacle to the wider use of this framework (Brubaker et al., 2006). They also hinder the process of producing effective object detection applications and make the testing of new theories and algorithms, as well as verifications of others research, a considerable challenge (McCane and Novins, 2003). An additional shortcoming of the CoBE framework is its limited ability to train clas- sifiers incrementally. Presently, the most reliable method of integrating new dataset in- formation into an existing classifier, is to re-train a classifier from beginning using the combined new and old datasets. This process is inefficient. It lacks scalability and dis- cards valuable information learned in previous training. To deal with these challenges, this thesis extends on the research by Barczak et al. (2008), and presents alternative CoBE frameworks for training classifiers. The alterna- tive frameworks reduce training runtimes by an order of magnitude over common CoBE frameworks and introduce additional tractability to the process. They achieve this, while preserving the generalization ability of their classifiers. This research also introduces a new framework for incrementally training CoBE clas- sifiers and shows how this can be done without re-training classifiers from beginning. However, the incremental framework for CoBEs has some limitations. Although it is able to improve the positive detection rates of existing classifiers, currently it is unable to lower their false detection rates.
9

Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand

Susnjak, Teo January 2009 (has links)
This thesis seeks to address current problems encountered when training classifiers within the framework of cascades of boosted ensembles (CoBE). At present, a signifi- cant challenge facing this framework are inordinate classifier training runtimes. In some cases, it can take days or weeks (Viola and Jones, 2004; Verschae et al., 2008) to train a classifier. The protracted training runtimes are an obstacle to the wider use of this framework (Brubaker et al., 2006). They also hinder the process of producing effective object detection applications and make the testing of new theories and algorithms, as well as verifications of others research, a considerable challenge (McCane and Novins, 2003). An additional shortcoming of the CoBE framework is its limited ability to train clas- sifiers incrementally. Presently, the most reliable method of integrating new dataset in- formation into an existing classifier, is to re-train a classifier from beginning using the combined new and old datasets. This process is inefficient. It lacks scalability and dis- cards valuable information learned in previous training. To deal with these challenges, this thesis extends on the research by Barczak et al. (2008), and presents alternative CoBE frameworks for training classifiers. The alterna- tive frameworks reduce training runtimes by an order of magnitude over common CoBE frameworks and introduce additional tractability to the process. They achieve this, while preserving the generalization ability of their classifiers. This research also introduces a new framework for incrementally training CoBE clas- sifiers and shows how this can be done without re-training classifiers from beginning. However, the incremental framework for CoBEs has some limitations. Although it is able to improve the positive detection rates of existing classifiers, currently it is unable to lower their false detection rates.
10

Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand

Susnjak, Teo January 2009 (has links)
This thesis seeks to address current problems encountered when training classifiers within the framework of cascades of boosted ensembles (CoBE). At present, a signifi- cant challenge facing this framework are inordinate classifier training runtimes. In some cases, it can take days or weeks (Viola and Jones, 2004; Verschae et al., 2008) to train a classifier. The protracted training runtimes are an obstacle to the wider use of this framework (Brubaker et al., 2006). They also hinder the process of producing effective object detection applications and make the testing of new theories and algorithms, as well as verifications of others research, a considerable challenge (McCane and Novins, 2003). An additional shortcoming of the CoBE framework is its limited ability to train clas- sifiers incrementally. Presently, the most reliable method of integrating new dataset in- formation into an existing classifier, is to re-train a classifier from beginning using the combined new and old datasets. This process is inefficient. It lacks scalability and dis- cards valuable information learned in previous training. To deal with these challenges, this thesis extends on the research by Barczak et al. (2008), and presents alternative CoBE frameworks for training classifiers. The alterna- tive frameworks reduce training runtimes by an order of magnitude over common CoBE frameworks and introduce additional tractability to the process. They achieve this, while preserving the generalization ability of their classifiers. This research also introduces a new framework for incrementally training CoBE clas- sifiers and shows how this can be done without re-training classifiers from beginning. However, the incremental framework for CoBEs has some limitations. Although it is able to improve the positive detection rates of existing classifiers, currently it is unable to lower their false detection rates.

Page generated in 0.3353 seconds