• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asynchronous Level Crossing ADC for Biomedical Recording Applications

Pae, Kieren 08 1900 (has links)
This thesis focuses on the recording challenges faced in biomedical systems. More specifically, the challenges in neural signal recording are explored. Instead of the typical synchronous ADC system, a level crossing ADC is detailed as it has gained recent interest for low-power biomedical systems. These systems take advantage of the time-sparse nature of the signals found in this application. A 10-bit design is presented to help capture the lower amplitude action potentials (APs) in neural signals. The design also achieves a full-scale bandwidth of 1.2 kHz, an ENOB of 9.81, a power consumption of 13.5 microwatts, operating at a supply voltage of 1.8 V. This design was simulated in Cadence using 180 nm CMOS technology.
2

Low-Power Biopotential Signal Acquisition System for Biomedical Applications

Tasneem, Nishat Tarannum 05 1900 (has links)
The key requirements of a reliable neural signal recording system include low power to support long-term monitoring, low noise, minimum tissue damage, and wireless transmission. The neural spikes are also detected and sorted on-chip/off-chip to implement closed-loop neuromodulation in a high channel count setup. All these features together constitute an empirical neural recording system for neuroscience research. In this prospectus, we propose to develop a neural signal acquisition system with wireless transmission and feature extraction. We start by designing a prototype entirely built with commercial-off-the-shelf components, which includes recording and wireless transmission of synthetic neural data and feature extraction. We then conduct the CMOS implementation of the low-power multi-channel neural signal recording read-out circuit, which enables the in-vivo recording with a small form factor. Another direction of this thesis is to design a self-powered motion tracking read-out circuit for wearable sensors. As the wearable industry continues to advance, the need for self-powered medical devices is growing significantly. In this line of research, we propose a self-powered motion sensor based on reverse electrowetting-on-dielectric (REWOD) with low-power integrated electronics for remotely monitoring health conditions. We design the low-power read-out circuit for a wide range of input charges, which is generated from the REWOD sensor.

Page generated in 0.0839 seconds