• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the organization of neural response variability: Probing somatosensory excitability dynamics with oscillatory brain states and stimulus-evoked potentials

Stephani, Tilman 15 June 2023 (has links)
When it comes to perception, one of the most remarkable characteristics of the brain is its omnipresent variability: Even to identical sensory stimuli, no neural response is the same. It has been hypothesized that this response variability is induced by fluctuations of the brain’s instantaneous state, yet the underlying dynamics that link such neural states with stimulus-related processes remain poorly understood. Specifically, fluctuations of excitability in sensory regions of the cortex may shape the brain’s response to external stimuli and hence the perception thereof. The current work aimed at characterizing the modulatory role and spatiotemporal organization of cortical excitability in a series of three somatosensory stimulation paradigms in humans, employing electroencephalography (EEG) to examine the interplay between pre-stimulus oscillatory state and short-latency somatosensory evoked potentials, as well as their association with the consciously accessible stimulus percept. Excitability dynamics of the primary somatosensory cortex were found to be (i) temporally structured in a special way (long-range temporal dependencies in line with the concept of criticality), (ii) linked to the behaviorally perceived stimulus intensity already through initial cortical responses, and (iii) organized with spatially confined, somatotopic patterns. Taken together, these findings suggest that fluctuations of cortical excitability reflect the maintenance of a sensitive tradeoff between robustness and flexibility of neural responses to sensory stimuli, enabling the brain to adaptively change the neural encoding of even low-level stimulus features, such as the stimulus’ intensity. Importantly, however, moment-to-moment neural response variability appears not to occur “at random”, that is, in a stochastically independent manner, but to be organized according to specific principles – both in the temporal and spatial domain.
2

Neuronale Variabilität und die Grenzen der Signalerkennung

Neuhofer, Daniela 14 September 2010 (has links)
Ziel der vorliegenden Arbeit war es, die Auswirkungen von externen Störquellen und intrinsischer Variabilität auf die Verarbeitung und Erkennung von akustischen Signalen am Modellsystem der Feldheuschrecke Chorthippus biguttulus zu untersuchen. Damit sowohl die Gesangserkennung am sich verhaltenden Tier als auch die dieser Erkennung zugrunde liegende neuronale Verarbeitung untersucht werden konnte, wurde ein Weibchengesang verwendet, dessen zeitliches Muster durch zufällige Amplitudenmodulationen gestört wurde. Durch die Degradation mit verschiedenen Frequenzbändern konnte überprüft werden, ob bestimmte Modulationsfrequenzen die Signalerkennung stärker beeinflussen als andere. Mit zunehmender Störung der Gesangsstruktur kam es in den Verhaltenstests an Männchen zu einer Abnahme der Erkennungsleistung. Die Stärke der tolerierten Degradation war dabei in der Regel nicht unterschiedlich für die getesteten Degradationsbänder. Die Unterschiede in den neuronalen Antworten, welche entweder durch die artifizielle extrinsische Degradation oder durch interne Fehler in der auditorischen Verarbeitung verursacht wurden, konnten durch eine Spiketrain-Metrik quantifiziert werden. Diese Analyse zeigte, dass die Auswirkung der extrinsischen Signaldegradation von den Rezeptoren über die lokalen Interneurone zu den aufsteigenden Interneuronen abnahm, während es zu einem signifikanten Anstieg der intrinsischen Variabilität kam. Die Stärke der Degradation war dabei erneut nicht unterschiedlich für die getesteten Degradationsbänder. Durch die Bestimmung von neurometrischen Schwellen konnten die Grenzen der Signalerkennung der Männchen mit der Rauschtoleranz der einzelnen auditorischen Neurone verglichen werden. Die kritischen Degradationsstufen, die so ermittelt werden konnten, stimmten teilweise erstaunlich gut überein. Somit sind die Grenzen der Signalerkennung durch die Analyse der Antwortkapazitäten der ersten drei Verarbeitungsstufen relativ gut erklärbar. / The aim of this study was to investigate the effects of extrinsic and intrinsic noise sources on signal recognition and processing within the acoustic communication system of the grasshopper Chorthippus biguttulus. To test both - signal recognition of behaving animals and the underlying auditory processing mechanisms - a female song was used, whose temporal pattern was disturbed by random amplitude modulations. Due to the degradation with various modulation bands, it was possible to test if distinct modulation frequencies have more pronounced effects on signal recognition than others. Behavioural tests on males of Chorthippus biguttulus showed that progressive degradation of the song pattern induced a decrease in recognition performance. The strength of degradation tolerated generally was the same for different modulation bands. The differences between neuronal responses, which were either caused by the artificial extrinsic degradation or internal errors during auditory processing, could be quantified by a spiketrain metric. This analysis showed that the effect of extrinsic signal degradation was much more severe for receptors and local interneurons than for ascending interneurons, whereas there was a significant increase of intrinsic variability with higher levels of processing. The strength of the degradation was again not different for different modulation bands. Signal recognition could be compared with the noise tolerance of individual auditory neurons by determining neurometric thresholds. The average critical degradation levels, to some extend, matched the critical degradation level for behaviour. Thus, by means of analysing the response capacities of neurons from the first three levels of auditory processing, the limits of signal detection are relatively well explained.
3

From dynamics to computations in recurrent neural networks / Dynamique et traitement d’information dans les réseaux neuronaux récurrents

Mastrogiuseppe, Francesca 04 December 2017 (has links)
Le cortex cérébral des mammifères est constitué de larges et complexes réseaux de neurones. La tâche de ces assemblées de cellules est d’encoder et de traiter, le plus précisément possible, l'information sensorielle issue de notre environnement extérieur. De façon surprenante, les enregistrements électrophysiologiques effectués sur des animaux en comportement ont montré que l’activité corticale est excessivement irrégulière. Les motifs temporels d’activité ainsi que les taux de décharge moyens des cellules varient considérablement d’une expérience à l’autre, et ce malgré des conditions expérimentales soigneusement maintenues à l’identique. Une hypothèse communément répandue suggère qu'une partie importante de cette variabilité émerge de la connectivité récurrente des réseaux. Cette hypothèse se fonde sur la modélisation des réseaux fortement couplés. Une étude classique [Sompolinsky et al, 1988] a en effet montré qu'un réseau de cellules aux connections aléatoires exhibe une transition de phase : l’activité passe d'un point fixe ou le réseau est inactif, à un régime chaotique, où les taux de décharge des cellules fluctuent au cours du temps et d’une cellule à l’autre. Ces analyses soulèvent néanmoins de nombreuse questions : de telles fluctuations sont-elles encore visibles dans des réseaux corticaux aux architectures plus réalistes? De quelle façon cette variabilité intrinsèque dépend-elle des paramètres biophysiques des cellules et de leurs constantes de temps ? Dans quelle mesure de tels réseaux chaotiques peuvent-ils sous-tendre des computations ? Dans cette thèse, on étudiera la dynamique et les propriétés computationnelles de modèles de circuits de neurones à l’activité hétérogène et variable. Pour ce faire, les outils mathématiques proviendront en grande partie des systèmes dynamiques et des matrices aléatoires. Ces approches seront couplées aux méthodes statistiques des champs moyens développées pour la physique des systèmes désordonnées. Dans la première partie de cette thèse, on étudiera le rôle de nouvelles contraintes biophysiques dans l'apparition d’une activité irrégulière dans des réseaux de neurones aux connections aléatoires. Dans la deuxième et la troisième partie, on analysera les caractéristiques de cette variabilité intrinsèque dans des réseaux partiellement structurées supportant des calculs simples comme la prise de décision ou la création de motifs temporels. Enfin, inspirés des récents progrès dans le domaine de l’apprentissage statistique, nous analyserons l’interaction entre une architecture aléatoire et une structure de basse dimension dans la dynamique des réseaux non-linéaires. Comme nous le verrons, les modèles ainsi obtenus reproduisent naturellement un phénomène communément observé dans des enregistrements électrophysiologiques : une dynamique de population de basse dimension combinée avec représentations neuronales irrégulières, à haute dimension, et mixtes. / The mammalian cortex consists of large and intricate networks of spiking neurons. The task of these complex recurrent assemblies is to encode and process with high precision the sensory information which flows in from the external environment. Perhaps surprisingly, electrophysiological recordings from behaving animals have pointed out a high degree of irregularity in cortical activity. The patterns of spikes and the average firing rates change dramatically when recorded in different trials, even if the experimental conditions and the encoded sensory stimuli are carefully kept fixed. 
One current hypothesis suggests that a substantial fraction of that variability emerges intrinsically because of the recurrent circuitry, as it has been observed in network models of strongly interconnected units. In particular, a classical study [Sompolinsky et al, 1988] has shown that networks of randomly coupled rate units can exhibit a transition from a fixed point, where the network is silent, to chaotic activity, where firing rates fluctuate in time and across units. Such analysis left a large number of questions unsolved: can fluctuating activity be observed in realistic cortical architectures? How does variability depend on the biophysical parameters and time scales? How can reliable information transmission and manipulation be implemented with such a noisy code? 
In this thesis, we study the spontaneous dynamics and the computational properties of realistic models of large neural circuits which intrinsically produce highly variable and heterogeneous activity. The mathematical tools of our analysis are inherited from dynamical systems and random matrix theory, and they are combined with the mean field statistical approaches developed for the study of physical disordered systems. 
In the first part of the dissertation, we study how strong rate irregularities can emerge in random networks of rate units which obey some among the biophysical constraints that real cortical neurons are subject to. In the second and third part of the dissertation, we investigate how variability is characterized in partially structured models which can support simple computations like pattern generation and decision making. To this aim, inspired by recent advances in networks training techniques, we address how random connectivity and low-dimensional structure interact in the non-linear network dynamics. The network models that we derive naturally capture the ubiquitous experimental observations that the population dynamics is low-dimensional, while neural representations are irregular, high-dimensional and mixed.

Page generated in 0.0505 seconds