• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 1
  • Tagged with
  • 34
  • 34
  • 26
  • 24
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelagem de população de neurônios via equações diferenciais parciais

Souza , Marcos Teixeira de 11 April 2017 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2017-08-14T19:30:04Z No. of bitstreams: 1 MTS-thesis.pdf: 2646966 bytes, checksum: fc278af06348a899491121677d2bb5b5 (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-14T19:30:15Z (GMT) No. of bitstreams: 1 MTS-thesis.pdf: 2646966 bytes, checksum: fc278af06348a899491121677d2bb5b5 (MD5) / Made available in DSpace on 2017-08-14T19:30:24Z (GMT). No. of bitstreams: 1 MTS-thesis.pdf: 2646966 bytes, checksum: fc278af06348a899491121677d2bb5b5 (MD5) Previous issue date: 2017-04-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) / Neuroscience aims to understand the mechanisms that regulate the nervous system, to fight existing maladier associated with brain functions, to extend the knowledge in human cognitive development, among others. In the present work we study the communication between neurons of a region of the brain with the purpose to construct a mathematical and computationally feasible model that accurately describes how the information is transmitted between neuronal cells. We approached the behavior of neurons through the FiztHugh-Nagumo equations, constructing a discrete model consistent with the continuous model through the strategy of increasing the number of neurons within the considered neural network. Consequently we obtain numerical results characterized by models of differential equations that describe a distribution of an action potential through non-linear equations of the reaction-diffusion-convection type and a convergence study of the discrete model. / A neurociência tem como objetivo entender os mecanismos que regulam o sistema nervoso, para combater os males existentes associados a funções cerebrais, ampliar o conhecimento no desenvolvimento cognitivo humano, etc. No presente trabalho estudamos a comunicação entre neurônios de uma mesma região do cérebro com o propósito na construção de um modelo matemático que descreva de forma acurada e exequível computacionalmente como as informações são transmitidas entre as células neuronais. Abordamos o comportamento dos neurônios através das equações de FiztHugh-Nagumo, construindo um modelo discreto consistente com o modelo contínuo através da estratégia de aumentar cada vez mais a quantidade de neurônios dentro da rede neural considerada. Consequentemente obtemos resultados numéricos caracterizados por modelos de equações diferenciais parciais que descrevem a distribuição de um potencial de ação através de equações não lineares do tipo reação-difusão-convecção e um estudo de convergência do modelo discreto.
22

Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.

Elias, Leonardo Abdala 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
23

Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.

Leonardo Abdala Elias 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
24

O papel dos interneurônios inibitórios do bulbo olfatório no processamento de odores: um estudo computacional / The role of inhibitory interneurons of the Olfactory Bulb on Odor Processing: A Computational Study

Facchini, Denise Arruda 11 August 2015 (has links)
O entendimento dos mecanismos de representação e processamento de odores pelo sistema olfatório é uma das questões centrais da neurociência moderna. Os odores são codificados pela circuitaria interna do bulbo olfatório em padrões espaço-temporais refletidos pela atividade de suas células de saída, as células mitrais e tufosas, que transmitem os resultados das computações dessa estrutura inicial de processamento a regiões corticais superiores. A arquitetura das conexões existentes no bulbo olfatório apresenta inibição lateral em duas camadas diferentes de sua estrutura laminar, intermediadas por dois tipos distintos de interneurônios. Na camada glomerular, mais externa, a inibição lateral é mediada pelas células periglomerulares e na camada plexiforme externa, mais interna, a inibição lateral é mediada pelas células granulares. O papel desses dois níveis distintos de inibição lateral e os mecanismos segundo os quais eles atuam moldando os padrões espaço-temporais de resposta do bulbo olfatório a odores diferentes são ainda pouco conhecidos. O objetivo deste trabalho foi construir um modelo de rede neural biologicamente plausível do bulbo olfatório para investigar como dois tipos diferentes de interneurônios, atuando em estágios distintos de processamento, podem contribuir para a discriminação de odores e a coordenação dos padrões de disparo das células mitrais. O modelo de rede construído, com representação de odores pela atividade das células mitrais e baseado nas interações recíprocas entre essas células e os interneurônios inibitórios, mostrou que a inibição gerada pelas células periglomerulares pode melhorar o contraste entre odores similares, facilitando a discriminação de odores, enquanto que a inibição das células granulares atua no refinamento da resposta de saída da informação olfatória. / The understanding of odor representation and processing mechanisms by the olfactory system is one of the central questions of modern neuroscience. Odors are encoded by the olfactory bulb circuitry in terms of spatiotemporal spiking patterns. These are reflected in the activity of the mitral cells, which are the output cells of the olfactory bulb that transmit the information processed in this early structure to higher cortical regions. The architecture of the olfactory bulb connections presents lateral inhibition at two different layers of its laminar structure, mediated by two distinct types of interneurons. In the glomerular layer, lateral inhibition is mediated by periglomerular cells. In the external plexiform layer, lateral inhibition is mediated by granule cells. The role of these two different lateral inhibition levels and the mechanisms whereby they shape the spatial and temporal patterns of the olfactory bulb response to different odors is not well known. The aim of this work was to build a biologically plausible neural network model of the olfactory bulb to investigate how two different types of interneurons, acting at different processing stages, could contribute to odor discrimination and the coordination of the mitral cells spiking patterns. The results of simulations of the network model shown that the inhibition generated by periglomerular cells can provide contrast enhancement and odors discrimination, while the granule cell inhibition can refine the output response of the olfactory information.
25

Análises de estabilidade e de sensibilidade de modelos biologicamente plausíveis do córtex visual primário / Stability and Sensitivity analysis of biologically plausible models of primary visual cortex neurons

Vieira, Diogo Porfirio de Castro 17 October 2008 (has links)
A neurociência computacional é uma vasta área que tem como objeto de estudo o entendimento ou a emulação da dinâmica cerebral em diversos níveis. Neste trabalho atenta-se ao estudo da dinâmica de neurônios, os quais, no consenso atual, acredita-se serem as unidades fundamentais do processamento cerebral. A importância do estudo sobre o comportamento de neurônios se encontra na diversidade de propriedades que eles podem apresentar. O estudo se torna mais rico quando há interações de sistemas internos ao neurônio em diferentes escalas de tempo, criando propriedades como adaptação, latência e comportamento em rajada, o que pode acarretar em diferentes papéis que os neurônios podem ter na rede. Nesta dissertação é feita uma análise sob o ponto de vista de sistemas dinâmicos e de análise de sensibilidade de seis modelos ao estilo de Hodgkin-Huxley e compartimentais de neurônios encontrados no córtex visual primário de mamíferos. Esses modelos correspondem a seis classes eletrofisiológicas de neurônios corticais e o estudo feito nesta dissertação oferece uma contribuição ao entendimento dos princípios de sistemas dinâmicos subjacentes a essa classificação. / Computational neuroscience is a vast scientific area which has as subject of study the unsderstanding or emulation of brain dynamics at different levels. This work studies the dynamics of neurons, which are believed, according to present consensus, to be the fundamental processing units of the brain. The importance of studying neuronal behavior comes from the diversity of properties they may have. This study becomes richer when there are interactions between distintic neuronal internal systems, in different time scales, creating properties like adaptation, latency and bursting, resulting in different roles that neurons may have in the network. This dissertation contains a study of six reduced compartmental conductance-based models of neurons found in the primary visual cortex of mammals under the dynamical systems and sensitivity analysis viewpoints. These models correspond to six eletrophysiological classes of cortical neurons and this dissertation offers a contribution to the understanding of the dynamical-systems principles underlying such classification.
26

O papel dos interneurônios inibitórios do bulbo olfatório no processamento de odores: um estudo computacional / The role of inhibitory interneurons of the Olfactory Bulb on Odor Processing: A Computational Study

Denise Arruda Facchini 11 August 2015 (has links)
O entendimento dos mecanismos de representação e processamento de odores pelo sistema olfatório é uma das questões centrais da neurociência moderna. Os odores são codificados pela circuitaria interna do bulbo olfatório em padrões espaço-temporais refletidos pela atividade de suas células de saída, as células mitrais e tufosas, que transmitem os resultados das computações dessa estrutura inicial de processamento a regiões corticais superiores. A arquitetura das conexões existentes no bulbo olfatório apresenta inibição lateral em duas camadas diferentes de sua estrutura laminar, intermediadas por dois tipos distintos de interneurônios. Na camada glomerular, mais externa, a inibição lateral é mediada pelas células periglomerulares e na camada plexiforme externa, mais interna, a inibição lateral é mediada pelas células granulares. O papel desses dois níveis distintos de inibição lateral e os mecanismos segundo os quais eles atuam moldando os padrões espaço-temporais de resposta do bulbo olfatório a odores diferentes são ainda pouco conhecidos. O objetivo deste trabalho foi construir um modelo de rede neural biologicamente plausível do bulbo olfatório para investigar como dois tipos diferentes de interneurônios, atuando em estágios distintos de processamento, podem contribuir para a discriminação de odores e a coordenação dos padrões de disparo das células mitrais. O modelo de rede construído, com representação de odores pela atividade das células mitrais e baseado nas interações recíprocas entre essas células e os interneurônios inibitórios, mostrou que a inibição gerada pelas células periglomerulares pode melhorar o contraste entre odores similares, facilitando a discriminação de odores, enquanto que a inibição das células granulares atua no refinamento da resposta de saída da informação olfatória. / The understanding of odor representation and processing mechanisms by the olfactory system is one of the central questions of modern neuroscience. Odors are encoded by the olfactory bulb circuitry in terms of spatiotemporal spiking patterns. These are reflected in the activity of the mitral cells, which are the output cells of the olfactory bulb that transmit the information processed in this early structure to higher cortical regions. The architecture of the olfactory bulb connections presents lateral inhibition at two different layers of its laminar structure, mediated by two distinct types of interneurons. In the glomerular layer, lateral inhibition is mediated by periglomerular cells. In the external plexiform layer, lateral inhibition is mediated by granule cells. The role of these two different lateral inhibition levels and the mechanisms whereby they shape the spatial and temporal patterns of the olfactory bulb response to different odors is not well known. The aim of this work was to build a biologically plausible neural network model of the olfactory bulb to investigate how two different types of interneurons, acting at different processing stages, could contribute to odor discrimination and the coordination of the mitral cells spiking patterns. The results of simulations of the network model shown that the inhibition generated by periglomerular cells can provide contrast enhancement and odors discrimination, while the granule cell inhibition can refine the output response of the olfactory information.
27

Análises de estabilidade e de sensibilidade de modelos biologicamente plausíveis do córtex visual primário / Stability and Sensitivity analysis of biologically plausible models of primary visual cortex neurons

Diogo Porfirio de Castro Vieira 17 October 2008 (has links)
A neurociência computacional é uma vasta área que tem como objeto de estudo o entendimento ou a emulação da dinâmica cerebral em diversos níveis. Neste trabalho atenta-se ao estudo da dinâmica de neurônios, os quais, no consenso atual, acredita-se serem as unidades fundamentais do processamento cerebral. A importância do estudo sobre o comportamento de neurônios se encontra na diversidade de propriedades que eles podem apresentar. O estudo se torna mais rico quando há interações de sistemas internos ao neurônio em diferentes escalas de tempo, criando propriedades como adaptação, latência e comportamento em rajada, o que pode acarretar em diferentes papéis que os neurônios podem ter na rede. Nesta dissertação é feita uma análise sob o ponto de vista de sistemas dinâmicos e de análise de sensibilidade de seis modelos ao estilo de Hodgkin-Huxley e compartimentais de neurônios encontrados no córtex visual primário de mamíferos. Esses modelos correspondem a seis classes eletrofisiológicas de neurônios corticais e o estudo feito nesta dissertação oferece uma contribuição ao entendimento dos princípios de sistemas dinâmicos subjacentes a essa classificação. / Computational neuroscience is a vast scientific area which has as subject of study the unsderstanding or emulation of brain dynamics at different levels. This work studies the dynamics of neurons, which are believed, according to present consensus, to be the fundamental processing units of the brain. The importance of studying neuronal behavior comes from the diversity of properties they may have. This study becomes richer when there are interactions between distintic neuronal internal systems, in different time scales, creating properties like adaptation, latency and bursting, resulting in different roles that neurons may have in the network. This dissertation contains a study of six reduced compartmental conductance-based models of neurons found in the primary visual cortex of mammals under the dynamical systems and sensitivity analysis viewpoints. These models correspond to six eletrophysiological classes of cortical neurons and this dissertation offers a contribution to the understanding of the dynamical-systems principles underlying such classification.
28

Processamento de informação em redes neurais sensoriais / Information processing in sensory neural networks

Mosqueiro, Thiago Schiavo 26 August 2015 (has links)
Com os avanços em eletrônica analógica e digital dos últimos 50 anos, a neurociência ganhou grande momentum e nasceu uma de suas áreas que atualmente mais recebe financiamento: neurociência computacional. Estudos nessa área, ainda considerada recente, vão desde estudos moleculares de trocas iônicas por canais iônicos (escala nanométrica), até influências de populações neurais no comportamento de grandes mamíferos (escala de até metros). O coração da neurociência computacional compreende técnicas inter- e multidisciplinares, envolvendo biologia de sistemas, bioquímica, modelagem matemática, estatística, termodinâmica, física estatística, etc. O impacto em áreas de grande interesse, como o desenvolvimento de fármacos e dispositivos militares, é a grande força motriz desta área. Especificamente para este último, a compreensão do código neural e como informação sensorial é trabalhada por populações de neurônios é essencial. E ainda estamos num estágio muito inicial de desvendar todo o funcionamento de muitos dos sistemas sensoriais mais complexos. Um exemplo é de um dos sentidos que parece existir desde as formas mais primitivas de vida: o olfato. Em mamíferos, o número de estudos parece sempre crescer com os anos. Ainda estamos, no entanto, longe de um consenso sobre o funcionamento de muitos dos mecanismos básicos do olfato. A literatura é extensa em termos bioquímicos e comportamental, mas reunir tudo em um único modelo é talvez o grande desafio atual. Nesta tese discuto, em duas partes, sistemas sensoriais seguindo uma linha bastante ligada ao sistema olfativo. Na primeira parte, um modelo formal que lembra o bulbo olfativo (de mamíferos) é considerado para investigar a relação entre a performance da codificação neural e a existência de uma dinâmica crítica. Em especial, discuto sobre últimos experimentos baseados em observações de leis de potência como evidências da existência de criticalidade e ótima performance em populações neurais. Mostro que, apesar de a performance das redes estar, sim, ligada ao ponto crítico do sistema, a existência de leis de potência não está ligada nem com tal ponto crítico, nem com a ótima performance. Experimentos recentes confirmam estas observações. Na segunda parte, discuto e proponho uma modelagem inicial para o órgão central do sentido olfativo em insetos: o Corpo Cogumelar. A novidade deste modelo está na integração temporal, além de conseguir tanto fazer reconhecimento de padrões (qual odor) e estimativa de concentrações de odores. Com este modelo, proponho uma explicação para uma recente observação de antecipação neural no Corpo Cogumelar, em que sua última camada paradoxalmente parece antecipar a primeira camada. Proponho a existência de um balanço entre agilidade do código neural contra acurácia no reconhecimento de padrões. Este balanço pode ser empiricamente testado. Também proponho a existência de um controle de ganho no Corpo Cogumelar que seria responsável pela manutenção dos ingredientes principais para reconhecimento de padrões e aprendizado. Ambas estas partes contribuem para o compreendimento de como sistemas sensoriais operam e quais os mecanismos fundamentais que os fornecem performance invejável. / With the advances in digital and analogical electronics in the last 50 years, neuroscience gained great momentum and one of its most well-financed sub-areas was born: computational neuroscience. Studies in this area, still considered recent by many, range from the ionic balance in the molecular level (scale of few nanometers), up to how neural populations influence behavior of large mammalians (scale of meters). The computational neuroscience core is highly based on inter- and multi-disciplinary techniques, involving systems biology, biochemistry, mathematical modeling, thermodynamics, statistical physics, etc. The impact in areas of current great interest, like in pharmaceutical drugs development and military devices, is its major flagship. Specifically for the later, deep understanding of neural code and how sensory information is filtered by neural populations is essential. And we are still grasping at the surface of really understanding many of the complex sensory systems we know. An example of such sensory modality that coexisted among all kinds of life forms is olfaction. In mammalians, the number of studies in this area seems to be growing steadily. However, we are still far from a complete agreement on how the basic mechanisms in olfaction work. There is a large literature of biochemical and behavioral studies, yet there is not a single model that comprises all this information and reproduces any olfactory system completely. In this thesis, I discuss in two parts sensory systems following a general line of argument based on olfaction. In the first part, a formal model that resembles the olfactory bulb (mammalians) is considered to investigate the relationship between performance in information coding and the existence of a critical dynamics. I show that, while the performance of neural networks may be intrinsically linked to a critical point, power laws are not exactly linked to neither critical points or performance optimization. Recent experiments corroborate this observation. In the second part, I discuss and propose a first dynamical model to the central organ responsible for olfactory learning in insects: the Mushroom Bodies. The novelty in this model is in the time integration, besides being able of pattern recognition (which odor) and concentration estimation at the same time. With this model, I propose an explanation for a seemingly paradoxical observation of coding anticipation in the Mushroom Bodies, where the last neural layer seems to trail the input layer. I propose the existence of a balance between accuracy and speed of pattern recognition in the Mushroom Bodies based on its fundamental morphological structure. I also propose the existence of a robust gain-control structure that sustain the key ingredients for pattern recognition and learning. This balance can be empirically tested. Both parts contribute to the understanding of the basic mechanisms behind sensory systems.
29

Influência da nicotina no foco de atenção : um modelo neurocomputacional para os circuitos da recompensa e tálamo-cortical / The influence of nicotine on attention focus : a neurocomputational model reward and thalamocortical circuits

Guimarães , Karine Damásio 30 March 2015 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2015-10-08T14:40:37Z No. of bitstreams: 1 thesiskarine.pdf: 6490137 bytes, checksum: 5cfc4bafd419dffab8b58cc3783124ae (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2015-10-08T14:40:53Z (GMT) No. of bitstreams: 1 thesiskarine.pdf: 6490137 bytes, checksum: 5cfc4bafd419dffab8b58cc3783124ae (MD5) / Made available in DSpace on 2015-10-08T14:41:02Z (GMT). No. of bitstreams: 1 thesiskarine.pdf: 6490137 bytes, checksum: 5cfc4bafd419dffab8b58cc3783124ae (MD5) Previous issue date: 2015-03-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this work we develop a neurocomputational model based on ordinary differential equations which describes the interaction between the reward circuit and the thalamocortical circuit, taking into account the influence of astrocyte. The physiology for these circuits is studied by a coupled model, used to obtain numerical results that describe the action potential behavior associated to each neuron in the neural network. The initial value equations of the proposed models are discretized using classical numerical methods. Thus, it is possible to study the attentional focus behavior when an exogenous substance is added to the system, in particular, to study the influence of nicotine on the attentional focus. The proposed modeling is applied on problems arising in medicine, specifically, in neuropsychiatry. The study cases refer to patients with chemical dependence in nicotine and attention deficit hyperactivity disorder (ADHD) / Neste trabalho desenvolvemos um modelo neurocomputacional baseado em equações diferenciais ordinárias, que descreve a interação entre o circuito da recompensa e o circuito tálamo-cortical, considerando a influência do astrócito. O estudo da fisiologia destes circuitos inspira a construção de um modelo acoplado para ser usado na obtenção de resultados numéricos que descrevem o comportamento do potencial de ação associado a cada neurônio da rede neural. Os problemas de valor inicial que representam os modelos estudados são discretizados usando métodos numéricos clássicos. Desta forma, é possível estudar o comportamento do foco de atenção quando uma substância exógena é adicionada ao sistema, em particular, estudar a influência da nicotina no foco de atenção. A modelagem aqui proposta é aplicada em problemas advindos da medicina, especificamente, da área de neuropsiquiatria. Os casos de estudos estudo estão restritos a pacientes com problemas de dependência química em nicotina e pacientes com transtorno de déficit de atenção e hiperatividade (TDAH).
30

Processamento de informação em redes neurais sensoriais / Information processing in sensory neural networks

Thiago Schiavo Mosqueiro 26 August 2015 (has links)
Com os avanços em eletrônica analógica e digital dos últimos 50 anos, a neurociência ganhou grande momentum e nasceu uma de suas áreas que atualmente mais recebe financiamento: neurociência computacional. Estudos nessa área, ainda considerada recente, vão desde estudos moleculares de trocas iônicas por canais iônicos (escala nanométrica), até influências de populações neurais no comportamento de grandes mamíferos (escala de até metros). O coração da neurociência computacional compreende técnicas inter- e multidisciplinares, envolvendo biologia de sistemas, bioquímica, modelagem matemática, estatística, termodinâmica, física estatística, etc. O impacto em áreas de grande interesse, como o desenvolvimento de fármacos e dispositivos militares, é a grande força motriz desta área. Especificamente para este último, a compreensão do código neural e como informação sensorial é trabalhada por populações de neurônios é essencial. E ainda estamos num estágio muito inicial de desvendar todo o funcionamento de muitos dos sistemas sensoriais mais complexos. Um exemplo é de um dos sentidos que parece existir desde as formas mais primitivas de vida: o olfato. Em mamíferos, o número de estudos parece sempre crescer com os anos. Ainda estamos, no entanto, longe de um consenso sobre o funcionamento de muitos dos mecanismos básicos do olfato. A literatura é extensa em termos bioquímicos e comportamental, mas reunir tudo em um único modelo é talvez o grande desafio atual. Nesta tese discuto, em duas partes, sistemas sensoriais seguindo uma linha bastante ligada ao sistema olfativo. Na primeira parte, um modelo formal que lembra o bulbo olfativo (de mamíferos) é considerado para investigar a relação entre a performance da codificação neural e a existência de uma dinâmica crítica. Em especial, discuto sobre últimos experimentos baseados em observações de leis de potência como evidências da existência de criticalidade e ótima performance em populações neurais. Mostro que, apesar de a performance das redes estar, sim, ligada ao ponto crítico do sistema, a existência de leis de potência não está ligada nem com tal ponto crítico, nem com a ótima performance. Experimentos recentes confirmam estas observações. Na segunda parte, discuto e proponho uma modelagem inicial para o órgão central do sentido olfativo em insetos: o Corpo Cogumelar. A novidade deste modelo está na integração temporal, além de conseguir tanto fazer reconhecimento de padrões (qual odor) e estimativa de concentrações de odores. Com este modelo, proponho uma explicação para uma recente observação de antecipação neural no Corpo Cogumelar, em que sua última camada paradoxalmente parece antecipar a primeira camada. Proponho a existência de um balanço entre agilidade do código neural contra acurácia no reconhecimento de padrões. Este balanço pode ser empiricamente testado. Também proponho a existência de um controle de ganho no Corpo Cogumelar que seria responsável pela manutenção dos ingredientes principais para reconhecimento de padrões e aprendizado. Ambas estas partes contribuem para o compreendimento de como sistemas sensoriais operam e quais os mecanismos fundamentais que os fornecem performance invejável. / With the advances in digital and analogical electronics in the last 50 years, neuroscience gained great momentum and one of its most well-financed sub-areas was born: computational neuroscience. Studies in this area, still considered recent by many, range from the ionic balance in the molecular level (scale of few nanometers), up to how neural populations influence behavior of large mammalians (scale of meters). The computational neuroscience core is highly based on inter- and multi-disciplinary techniques, involving systems biology, biochemistry, mathematical modeling, thermodynamics, statistical physics, etc. The impact in areas of current great interest, like in pharmaceutical drugs development and military devices, is its major flagship. Specifically for the later, deep understanding of neural code and how sensory information is filtered by neural populations is essential. And we are still grasping at the surface of really understanding many of the complex sensory systems we know. An example of such sensory modality that coexisted among all kinds of life forms is olfaction. In mammalians, the number of studies in this area seems to be growing steadily. However, we are still far from a complete agreement on how the basic mechanisms in olfaction work. There is a large literature of biochemical and behavioral studies, yet there is not a single model that comprises all this information and reproduces any olfactory system completely. In this thesis, I discuss in two parts sensory systems following a general line of argument based on olfaction. In the first part, a formal model that resembles the olfactory bulb (mammalians) is considered to investigate the relationship between performance in information coding and the existence of a critical dynamics. I show that, while the performance of neural networks may be intrinsically linked to a critical point, power laws are not exactly linked to neither critical points or performance optimization. Recent experiments corroborate this observation. In the second part, I discuss and propose a first dynamical model to the central organ responsible for olfactory learning in insects: the Mushroom Bodies. The novelty in this model is in the time integration, besides being able of pattern recognition (which odor) and concentration estimation at the same time. With this model, I propose an explanation for a seemingly paradoxical observation of coding anticipation in the Mushroom Bodies, where the last neural layer seems to trail the input layer. I propose the existence of a balance between accuracy and speed of pattern recognition in the Mushroom Bodies based on its fundamental morphological structure. I also propose the existence of a robust gain-control structure that sustain the key ingredients for pattern recognition and learning. This balance can be empirically tested. Both parts contribute to the understanding of the basic mechanisms behind sensory systems.

Page generated in 0.0753 seconds