• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SMR neurofeedback training for cognitive enhancement : the mediating effect of SMR baseline levels

Pacheco, Berta January 2011 (has links)
In this study, 24 adults without any psychological or neurological disorders participated either in 10 neurofeedback training sessions to increase the amplitude of a frequency band between 12 and 15 Hz (sensorimotor rhythm - SMR) or in ten mock neurofeedback sessions. Pre and post training measures of memory and executive functions were completed, along with quantitative electroencephalography (QEEG) measurements in order to detect changes after the training course. Furthermore, measures of SMR amplitude were taken within and across sessions to determine whether self-regulation of SMR had been achieved. The data analysis performed shows no significant differences in cognitive performance between the group who underwent neurofeedback training and the group who underwent mock neurofeedback training. The groups did not show electrophysiological changes after the training. Additionally, no significant changes in SMR amplitude or percent time above threshold across or within the 10 sessions were found in the experimental group. Moreover, the data showed a tendency, which indicates that the higher the baseline amplitude and absolute power of SMR the less time was spent above threshold during the training and the less increase in SMR amplitude between baseline and training periods. The findings obtained indicate that neurofeedback training did not affect memory, executive functions or the QEEG. The absence of significant changes in SMR amplitude across sessions might reflect failure in learning the neurofeedback task and may account for the lack of cognitive improvement and QEEG changes. The fact that the ability to self-regulate SMR might be dependent on baseline amplitude has important implications in setting thresholds. Setting thresholds according to baseline levels might increase the difficulty in maintaining SMR above threshold when the baseline is higher. Future research should also address whether baseline amplitude has a predictive value in determining successful self-regulation of brain activity.
2

Using EEG in neurofeedbacktraining to decrease visual motionsensitivity and motion-sickness / Träning med EEG neurofeedback i syfte att minska känsligheten för visuell rörelse och åksjuka

Rúnarsson, Ódinn K. January 2021 (has links)
Patients who suffer from motion-sickness, visual vertigo and other conditions relating to visual hypersensitivity will often feel dizzy when exposed to rapid visual motion or cluttered fields-of-view. Previous studies indicate that attentiveness to these stimuli influence the intensity of discomfort for these individuals, which suggests that mentally ignoring visual stimuli might help make them more tolerable. This thesis project had two goals. The primary goal was the development of a visual biofeedback system for use with a commercial electroencephalographic headset and a personal computer. The secondary goal was to evaluate its usefulness for treating motion-sickness and other related illnesses through regular training sessions. A neurofeedback program was constructed using MATLAB and a Muse 2 Brain Sensing Headband (Muse). The program projected a spinning maze like pattern on a monitor where increase in velocity was proportional to increase in theta wave activity (3.5-6.5 Hz) detected by the Muse. Five test subjects (three men and two women) were given a copy of the program and a Muse, and then instructed to practice reducing their EEG activity (e.g. by calming themselves), which would be reflected in the program as a slower spin velocity of the maze. These practice sessions took place daily for seven days. Neurofeedback proficiency and body sway data was collected before and after. Mean spectral power data from the training regimen shows a 23.7% drop in theta wave activity from first session to last (p = 0.005). Using Pearson’s correlation, no significant results were obtained while comparing training improvements and proficiency test improvements (r = -0.22, p = 0.72) or reduction in body sway (r = 0.78, p = 0.12).
3

Use of Adaptive Mobile Applications to Improve Mindfulness

Boshoff, Wiehan 08 June 2018 (has links)
No description available.

Page generated in 0.0649 seconds