Spelling suggestions: "subject:"neurofuzzy logic"" "subject:"neuro_fuzzy logic""
1 |
Intelligent control strategies for an autonomous underwater vehicleCraven, Paul Jason January 1999 (has links)
The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics are highly non-linear, and the relative similarity between the linear and angular velocities about each degree of freedom means that control schemes employed within other flight vehicles are not always applicable. In such instances, intelligent control strategies offer a more sophisticated approach to the design of the control algorithm. Neurofuzzy control is one such technique, which fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture. Such an approach is highly suited to development of an autopilot for an AUV. Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots. However, the limitation of this technique is that it cannot be used for developing multivariable fuzzy structures. Consequently, the co-active ANFIS (CANFIS) architecture is developed and employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design that can accommodate changing vehicle pay loads and environmental disturbances. Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system design, the well known properties of radial basis function networks (RBFN) offer a more flexible controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form. This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the hybrid learning rule, and provides a very effective approach to intelligent controller development.
|
2 |
Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulationShao, Qun, Rowe, Raymond C., York, Peter 14 July 2009 (has links)
No / This study compares the performance of neurofuzzy logic and neural networks using two software packages (INForm and FormRules) in generating predictive models for a published database for an immediate release tablet formulation. Both approaches were successful in developing good predictive models for tablet tensile strength and drug dissolution profiles. While neural networks demonstrated a slightly superior capability in predicting unseen data, neurofuzzy logic had the added advantage of generating rule sets representing the cause-effect relationships contained in the experimental data.
|
3 |
Controle com lógica Fuzzy e Neurofuzzy aplicada à análise e programação de robôs móveis com visualização e simulação 3D / Fuzzy and Neurofuzzy controls applied to analise and programming mobile robots with 3D visualization and simulationFelipe Sertã Abicalil 30 August 2007 (has links)
Este trabalho tem como objetivo o estudo de uma área da robótica chamada robótica móvel. Um robô móvel deve realizar uma navegação segura e esta é a principal motivação deste trabalho. Para tal foi desenvolvido um simulador de robótica móvel com visualização em 3D. Um dos grandes interesses na área de robótica móvel é a utilização de algoritmos de inteligência artificial. O objetivo deste trabalho é a utilização e
simulação de inteligência artificial para o controle destinado ao desvio de obstáculos. As simulações são dinâmicas, ou seja, o robô não tem informação previa do cenário. Os algoritmos de inteligência artificial implementadas neste trabalho são lógica Fuzzy e Neurofuzzy. As contribuições do simulador são: a simulação e visualização em 3D com o cenário modelado em um programa CAD/3D, permite testar diversas configurações antes
de testar o robô real, simula o ruído de sensores, utiliza lógica fuzzy e neurofuzzy para o desvio de obstáculos. Os resultados mostram a capacidade do sistema fuzzy para lidar com os dados ruidosos dos sensores assim como a influência das variáveis antecedentes e conseqüentes do sistema fuzzy de no comportamento do robô móvel para o desvio de obstáculos além da capacidade do sistema neurofuzzy de aprender a partir dos dados de treinamento mostrando uma melhoria no resultado das simulações. / This work has as objective the study of an area of the robotics named mobile robotics. A mobile robot must navigate in a safe way and this is the main motivation of this work. To do that a mobile robotics simulator with 3D visualization was developed. One of the great interests in mobile robotics is using artificial intelligence algorithms. The main point of this work is using and simulate artificial intelligence applied in obstacle avoidance control. The simulations are dynamics it means that the robot do not have previous information about the scenery. The artificial intelligence algorithms developed in this work are Fuzzy and Neurofuzzy logics. The simulator contributions are that the simulation and 3D visualization where the scenery is a 3D model from a CAD/3D software besides allows to test many configurations before testing the real robot and simulates noise from sensors and uses fuzzy and neurofuzzy logics to obstacle avoidance. The results show the fuzzy system capability to deal with the noisy data from sensors and how fuzzy variables influences the mobile robot behavior in obstacle avoidance besides the ability of neurofuzzy system to learn from training data showing improvements in the simulation results.
|
4 |
Controle com lógica Fuzzy e Neurofuzzy aplicada à análise e programação de robôs móveis com visualização e simulação 3D / Fuzzy and Neurofuzzy controls applied to analise and programming mobile robots with 3D visualization and simulationFelipe Sertã Abicalil 30 August 2007 (has links)
Este trabalho tem como objetivo o estudo de uma área da robótica chamada robótica móvel. Um robô móvel deve realizar uma navegação segura e esta é a principal motivação deste trabalho. Para tal foi desenvolvido um simulador de robótica móvel com visualização em 3D. Um dos grandes interesses na área de robótica móvel é a utilização de algoritmos de inteligência artificial. O objetivo deste trabalho é a utilização e
simulação de inteligência artificial para o controle destinado ao desvio de obstáculos. As simulações são dinâmicas, ou seja, o robô não tem informação previa do cenário. Os algoritmos de inteligência artificial implementadas neste trabalho são lógica Fuzzy e Neurofuzzy. As contribuições do simulador são: a simulação e visualização em 3D com o cenário modelado em um programa CAD/3D, permite testar diversas configurações antes
de testar o robô real, simula o ruído de sensores, utiliza lógica fuzzy e neurofuzzy para o desvio de obstáculos. Os resultados mostram a capacidade do sistema fuzzy para lidar com os dados ruidosos dos sensores assim como a influência das variáveis antecedentes e conseqüentes do sistema fuzzy de no comportamento do robô móvel para o desvio de obstáculos além da capacidade do sistema neurofuzzy de aprender a partir dos dados de treinamento mostrando uma melhoria no resultado das simulações. / This work has as objective the study of an area of the robotics named mobile robotics. A mobile robot must navigate in a safe way and this is the main motivation of this work. To do that a mobile robotics simulator with 3D visualization was developed. One of the great interests in mobile robotics is using artificial intelligence algorithms. The main point of this work is using and simulate artificial intelligence applied in obstacle avoidance control. The simulations are dynamics it means that the robot do not have previous information about the scenery. The artificial intelligence algorithms developed in this work are Fuzzy and Neurofuzzy logics. The simulator contributions are that the simulation and 3D visualization where the scenery is a 3D model from a CAD/3D software besides allows to test many configurations before testing the real robot and simulates noise from sensors and uses fuzzy and neurofuzzy logics to obstacle avoidance. The results show the fuzzy system capability to deal with the noisy data from sensors and how fuzzy variables influences the mobile robot behavior in obstacle avoidance besides the ability of neurofuzzy system to learn from training data showing improvements in the simulation results.
|
Page generated in 0.0454 seconds